КОНФЕРЕНЦІЇ ВНТУ електронні наукові видання, 
Міжнародна науково-технічна конференція з оптико-електронних інформаційних технологій "ФОТОНІКА − ODS 2025"

Розмір шрифта: 
INVESTIGATION OF THE TECHNICAL VISION OF FPV ROBOTS WITH IMAGE PROCESSING AND RECOGNITION
Nurzhan Beibituly Zhumakhan, Baurzhan Abdrahimovich Belgibayev, Kulzhan Ondrisovna Togzhanova, Gulzhan Bakhytovna Kashaganova

Остання редакція: 2025-04-21

Анотація


This review analyzes modern vision systems used in FPV (First-Person View) robots, with a focus on image processing and object recognition technologies. Based on recent scientific literature, the study compares neural network architectures, sensor fusion methods, and implementation approaches under real-time and resource-constrained conditions. A comparative analysis of key technologies (YOLOv8, Squeeze-EnGAN, LiDAR, RGB cameras, and others) is conducted. The findings reveal strengths and trade-offs relevant for autonomous navigation, robotic manipulation, and inspection tasks. Future prospects include edge AI integration, sensor optimization, and robust vision under low light and environmental variability

Ключові слова


FPV robots, technical vision, image recognition, neural networks, LiDAR, sensor fusion, computer vision, deep learning

Посилання


  1. 1.        In H., Kweon J., Moon C. Squeeze-EnGAN: Memory Efficient and Unsupervised Low-Light Image Enhancement for Intelligent Vehicles // Sensors. 2025. Vol. 25, No. 6. P. 1825. DOI: 10.3390/s25061825 
  2. 2.        Alihanov Z., Moldazhanov A., Kulmakhambetova A., Zinchenko D., Nurtuleuov A., Shynybai Z., Georgieva T., Daskalov P. Methodology for Determining Basic Physical Parameters of Apples Using Digital Image Analysis // AgriEngineering. 2025. Vol. 7, No. 3. P. 57. DOI: 10.3390/agriengineering7030057
  3. 3.        Qu H., Wang J., Lei L., Su W. Computer Vision in Robotic Systems: Oyster Identification and Grasping in Real Time // Applied Sciences. 2025. Vol. 15, No. 7. P. 3971. DOI: 10.3390/app15073971
  4. 4.        Wang P. Comparative study of LiDAR and camera in autonomous driving // Journal of Physics: Conference Series. 2021. Vol. 2093, No. 1. P. 012032. DOI: 10.1088/1742-6596/2093/1/012032
  5. 5.        Kawasaki H., Furukawa H., Tamura H., Kaneko S. Fusion of omnidirectional sonar and omnidirectional vision for mobile robot environment recognition // Proceedings of the 2000 ICRA. IEEE International Conference on Robotics and Automation. 2000. Vol. 1. P. 894–899. DOI: 10.1109/ROBOT.2000.845343
  6. 6.        Boshoff M., Kulenkampff B., Koslowski P. Dynamic Camera Planning for Robotic Manufacturing Processes Using UAVs // Robotics. 2025. Vol. 14, No. 3. P. 23. DOI: 10.3390/robotics14030023

Повний текст: PDF