Остання редакція: 2025-11-17
Анотація
Ключові слова
Посилання
1. Benaiges, D., Pedro-Botet, J., & Climent, E. (2021). Hydrophilic or lipophilic statins? Frontiers in Cardiovascular Medicine. https://doi.org/10.3389/fcvm.2021.687585
2. Baltruschat, M., & Czodrowski, P. (2020). Machine learning meets pKa. F1000Research. https://doi.org/10.12688/f1000research.22090.2
3. Caine, B. (2019). On the development and application of AIBL-pKa, a pKa predictor based on equilibrium bond lengths of a single protonation state.
4. Yang, Q., Li, Y., Liu, Y., Zhang, L., Luo, S., & Cheng, J. (2020). Holistic prediction of the pKa in diverse solvents based on a machine-learning approach.Angewandte Chemie International Edition, 43. https://doi.org/10.1002/anie.202008528
5. Xiong, J., Li, Z., Wang, G., Fu, Z., Zhong, F., Xu, T., Liu, X., Huang, Z., Liu, X., Chen, K., Jiang, H., & Zheng, M. (2022). Multi-instance learning of graph neural networks for aqueous pKa prediction. Bioinformatics, 38(3). https://doi.org/10.1093/bioinformatics/btab714
6. Li, M., Zhou, J., Hu, J., Fan, W., Zhang, Y., Gu, Y., & Karypis, G. (2017). DGL-LifeSci: An open-source toolkit for deep learning on graphs in life science.ACS Omega, 6(41). https://doi.org/10.1021/acsomega.1c04017
7. Landrum, G. (2023, September). RDKit: Open-source cheminformatics [Online]. Retrieved from https://www.rdkit.org
8. Raddi, R. M., & Voelz, V. A. (2022). Stacking Gaussian processes to improve pKa predictions in the SAMPL7 challenge. Journal of Computer-Aided Molecular Design, 35. https://doi.org/10.1007/s10822-021-00411-8