КОНФЕРЕНЦІЇ ВНТУ електронні наукові видання, 
Молодь в науці: дослідження, проблеми, перспективи (МН-2025)

Розмір шрифта: 
ЗАСТОСУВАННЯ НЕЙРОННИХ МЕРЕЖ ДЛЯ ПРОГНОЗУВАННЯ ВИКИДІВ ВУГЛЕЦЮ У ЕЛЕКТРОЕНЕРГЕТИЧНИХ СИСТЕМАХ
Володимир Кулик, Микита Сілаков

Остання редакція: 2025-03-03

Анотація


Парниковий ефект, утворений масивними викидами вуглекислого газу, завдав серйозної шкоди навколишньому середовищу Землі, в якому енергетика є одним з основних джерел глобальних викидів парникових газів. Скорочення викидів вуглецю в електроенергетиці відіграє важливу роль у зменшенні викидів парникових газів та пом'якшенні екологічних, економічних і соціальних наслідків зміни клімату, а прогнозування викидів вуглецю є важливою основою для формування політики щодо скорочення викидів вуглецю в електроенергетиці. У доповіді представлено детальний огляд результатів досліджень з прогнозування викидів вуглецю на основі глибокого навчання. Представлені основні нейронні мережі, що застосовуються в галузі прогнозування викидів вуглецю в Україні та за кордоном, а також моделі, що поєднують інші методи та нейронні мережі, і обговорюються основні ролі різних методів у поєднанні з нейронними мережами. Нейронні мережі були використані для прогнозування викидів вуглецю в електроенергетиці, і було проведено порівняння ефективності різних моделей щодо викидів вуглецю. Підводяться підсумки застосування нейронних мереж у сфері прогнозування викидів вуглецю та обговорюються майбутні напрямки досліджень.

Посилання


1. M. Tavassoli and A. Kamran-Pirzaman, "Comparison of effective greenhouse gases and global warming," 2023 8th International Conference on Technology and Energy Management (ICTEM), Mazandaran, Babol, Iran, Islamic Republic of, 2023, pp. 500 1-5, doi: 10.1109/ICTEM56862.2023.10083954.

2. Еволюція інтелектуальних електричних мереж та їхні перспективи в Україні / Б.С. Стогній, О.В. Кириленко, А.В. Праховник, С.П. Денисюк // Технічна електродинаміка. — 2012. — № 5. — С. 52–67.

3. Huijuan Yang, John F. O’Connell, Short-term carbon emissions forecast for aviation industry in Shanghai, Journal of Cleaner Production, Volume 275, 2020, 122734, ISSN 0959-6526, https://doi.org/10.1016/j.jclepro.2020.122734.

4. Li, Y., Li, T. & Lu, S. Forecast of urban traffic carbon emission and analysis of influencing factors. Energy Efficiency 14, 84 (2021). https://doi.org/10.1007/s12053-021-10001-0.

5. Lei Wen, Xiaoyu Yuan, Forecasting CO2 emissions in Chinas commercial department, through BP neural network based on random forest and PSO, Science of The Total Environment, Volume 718, 2020, 137194, ISSN 0048-9697, https://doi.org/10.1016/j.scitotenv.2020.137194.

6. WANG N, HAN C Y, ZHANG Y, et al. Research on regional carbon emissions peaking based on the threshold-STIRPAT extended model - taking East China as an example [J/OL]. Environmental Engineering: 1-11 [2023-11-13]. http://kns.cnki.net/kcms/detail/11.2097.X.20231026.1803.004.html.

7. PAN S Y, ZHANG M L. Research on carbon dioxide emission prediction and influencing factors in Gansu Province based on BP neural network [J]. Environmental Engineering, 2023, 41(07): 61-68+85. DOI: 10.13205/j.hjgc.202307009.

8. JI G Y. Application of BP neural network model based on gray correlation analysis in China's carbon emission prediction [J]. Practice and Understanding of Mathematics, 2014, 44(14): 243-249.

9. ZHAO J H, LI J S, WANG P L, et al. Research on carbon peak path in Henan Province based on Lasso-BP neural network model [J]. Environmental Engineering, 2022, 40(12): 151-156+164. DOI: 10.13205/j.hjgc.202212020.

10. YAN F Y, LIU S X, ZHANG X P. Research on land carbon emission prediction based on PCA-BP neural network [J]. Western Journal of Human Settlements and Environment, 2021, 36(06): 1-7. DOI: 10.13791/j.cnki.hsfwest.20210601.