Розмір шрифта:
ВИКОРИСТАННЯ МЕТОДІВ DATA MINING ДЛЯ ПРОГНОЗУВАННЯ ПОКАЗНИКІВ ЗОВНІШНЬОЕКОНОМІЧНОЇ ДІЯЛЬНОСТІ
Остання редакція: 2022-10-27
Анотація
В статті описані результати дослідження використання алгоритмів машинного навчання для аналізу і прогнозування показників зовнішньоекономічних операцій в Україні. Метою цієї статті є прогнозування показників імпорту і експорту з використанням алгоритмів машинного навчання (лінійна регресія, Gaussian Process Regression, SMOreg і нейронна мережа Multilayer Perceptron) на статистичних даних, що охоплюють період з 1 січня 2018 р. по 31 грудня 2021 р. З метою виявлення найточнішого результату прогнози зроблені з використанням статистичних даних для різних інтервалів базового періоду та періодів прогнозування. Точність алгоритмів машинного навчання оцінювалася за допомогою порівняння наступних показників: середня абсолютна похибка (MAE), середньоквадратична похибка (RMSE), та середня абсолютна похибка у відсотках (MAPE). Результати аналізу показали, що алгоритми машинного навчання досягли високоточної ефективності прогнозування. Виявлено, що нелінійні моделі значно краще справляються із задачею прогнозування експортно-імпортних операцій, ніж лінійні моделі. Загальна точність алгоритму SMOreg була кращою для всього інтервалу базового періоду та вибраного періоду прогнозу. Результати, отримані в результаті цього аналізу, можуть допомогти фахівцям з економіки в оцінці показників зовнішньоекономічних операцій в Україні. Реалізація прогнозування експортно-імпортних операцій на підставі використання алгоритму SMOreg може бути автоматизована для створення експертної системи з метою оцінки показників зовнішньоекономічних операцій в розрізі окремих регіонів.