Остання редакція: 2021-10-18
Анотація
Запропоновано програми наближеного обчислення інтегралів Стілтьєсата Лебега на мові Python, яких нині немає в програмних пакетах Sympy та Scipy, в яких зосереджені програмні функції обчислення лише однократних та багатократних інтегралів Рімана. Для реалізації цих програм здійснене коригування класичних математичних виразів, якими визначаються інтеграли Стілтьєса та Лебега і синтезовано алгоритми, придатні для розроблення програм наближеного обчислення цих інтегралів на мові Python. Особливістю алгоритму, який синтезовано для наближеного обчислення інтегралу Лебега, є врахування того, що міра Лебега дискретної функції, заданої на нульвимірній множині точок, розміщених на відрізку визначення її аргументу, є монотонною неперервною функцією координати функціональної осі, зростаючою від нуля в точці мінімального значення цієї функції до величини, що дорівнює довжині відрізка функціональної осі в межах від мінімального значення цієї функції до її максимального значення. В цьому алгоритмі значення дискретної функції, що інтегрується по Лебегу, відсортовуються так, щоб складати зростаючу послідовність, міра кожного значення якої задається відрізком функціональної осі в межах сусідніх значень цієї послідовності в бік її зростання. Розроблені програми інтегрування по Стілтьєсу та Лебегу намові Python містять у своїй структурі стандартні, уже відомі програмні функції цієї мови. Показано, що запропоновані програми будуть корисними науковцям, які займаються задачами системного аналізу з дискретними моделями.