Остання редакція: 2025-04-23
Анотація
Computer vision using CNNs on devices like Raspberry Pi enables accurate human presence detection for optimizing HVAC systems. Studies show over 90% accuracy and up to 40% energy savings with edge-deployed models. Successful integration requires balancing accuracy, speed, resource constraints, and privacy.
Ключові слова
Посилання
[1] Ham, J., Kim, B., Bae, I., & Joe, J. (2024). “Occupant-Detection-Based Individual Control of Four-Way Air Conditioner for Sustainable Building Energy Management.” Sustainability, 16(17), 7404.
[2] Huang, H. & Hao, X. (2020). “Development of a CNN-Based Visual Recognition Air-Conditioner for Smart Buildings.” Proceedings of the 2020 IEEE International Conference on Smart IoT, 590–597.
[3] Tien, P.W., Wei, S., Calautit, J.K., & Wu, Y. (2021). “Occupancy Heat Gain Detection and Prediction Using Deep Learning for Reducing Building Energy Demand.” Energies, 14(1), 156.
[4] Esrafilian‑Najafabadi M., Haghighat F. (2021). Occupancy‑based HVAC control systems in buildings: A state‑of‑the‑art review. Building and Environment, 197, 107810. DOI 10.1016/j.buildenv.2021.107810.