Остання редакція: 2025-04-09
Анотація
Ключові слова
Посилання
[1] Taras Hutsul, Vladyslav Tkach and Mykola Khobzei, Humanitarian demining: How can UAVs and Internet of Things help? Security and Infocommunicatiom Systems and Internet of Things, vol.1, No.2, 2023, pp.1–6. https://doi.org/10.31861/sisiot2023.2.02004
[2] Sineglazov, V.M., Ischenko, V.P.Integrated navigation complex of UAV on basis of flight controller. 2015 IEEE 3rd International Conference Actual Problems of Unmanned Aerial Vehicles Developments, APUAVD 2015 - Proceedings, pp. 20–25, 7346547, 2015.https://doi.org/10.1109/APUAVD.2015.7346547
[3] Sineglazov, V.M. Computer aided-design problems of unmanned aerial vehicles integrated navigation complexes. 2014 IEEE 3rd International Conference on Methods and Systems of Navigation and Motion Control, MSNMC 2014 Proceedings, pp. 9–14, 6979716, 2014.https://doi.org/10.1109/MSNMC.2014.6979716
[4] Sineglazov, V., Kot, A. Design of Hybrid Neural Networks of the Ensemble Structure. Eastern-European Journal of Enterprise Technologies, 1, pp. 31–45, 2021.https://doi.org/10.15587/1729-4061.2021.225301
[5] Ma, X.; Wang, H.; Wang, J. Semisupervised Classification for Hyperspectral Image Based on Multi-DecisionLabeling and Deep Feature Learning. J. Photogram. Remote Sens. 2016, 120, pp. 99–107. https://doi.org/10.1016/j.isprsjprs.2016.09.001
[6] Duan, P., Kang, X., Li, S., Benediktsson, J.A. Multi-Scale Structure Extraction for Hyperspectral ImageClassification. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS),Valencia, Spain, 22-27 July 2018, pp. 5724–5727.https://doi.org/10.1109/IGARSS.2018.8519425
[7] Senthilnath, J.; Kulkarni, S.; Benediktsson, J.A.; Yang, X.S. A Novel Approach for Multispectral Satellite ImageClassification Based on the Bat Algorithm. IEEE Geosci. Remote Sens. Lett. 2016, 13, pp. 599–603. https://doi.org/10.1109/LGRS.2016.2530724
[8] Yue Wu,, Guifeng Mu, Can Qin, Qiguang Miao, Wenping Ma, Xiangrong Zhang. Semi-Supervised Hyperspectral Image Classification via Spatial-Regulated Self-Training. Remote Sens. 2020, 12, 159, pp. 1–20.https://doi.org/10.3390/rs12010159
[9] Hao, W., & Prasad, S. (2017). Semi-supervised deep learning using pseudo labels for hyperspectral image classification. IEEE Transactions on Image Processing, (99), 1.
[10] He, X. (2021). Weakly supervised classification of hyperspectral image based on complementary learning. Remote Sensing, 13(24), 5009.https://doi.org/10.3390/rs13245009
[11] Song, L., Feng, Z., Yang, S., et al. (2022). Self-supervised assisted semi-supervised residual network for hyperspectral image classification. Remote Sensing, 14(13), 2997.https://doi.org/10.3390/rs14132997
[12] Zheng, X., Jia, J., Chen, J., et al. (2022). Hyperspectral image classification with imbalanced data based on semi-supervised learning. Applied Sciences, 12(8), 3943.https://doi.org/10.3390/app12083943
[13] K. Tan, E. Li, D. Qian, An efficient semi-supervised classification approach for hyperspectral imagery, ISPRS J. Photogramm. Remote Sens., 97, (2014), pp. 36–45. https://doi.org/10.1016/j.isprsjprs.2014.08.003
[14] S. Zhou, Z. Xue, P. Du, Semisupervised stacked autoencoder with cotraining for hyperspectral image classification, IEEE Trans. Geosci. Remote Sensi., 57, (2019), pp. 3813–3826. https://doi.org/10.1109/TGRS.2018.2888485
K. Lee, J. Shin, Y.-H. Lee, J. Ku and H.-W. Kim, SSASS: Semi-Supervised Approach for Stenosis Segmentation, arXiv preprint arXiv:2311.10281v1, 2023, https://arxiv.org/abs/2311.10281