КОНФЕРЕНЦІЇ ВНТУ електронні наукові видання, 
Молодь в науці: дослідження, проблеми, перспективи (МН-2026)

Розмір шрифта: 
DETECTING ANOMALIES IN PROGRAM BEHAVIOR USING STATISTICAL METHODS
Арсен Олександрович Лавренюк, Ростислав Олегович Савелко, Юрій Олександрович Шарко, Галина Олександрівна Черноволик, Володимир Павлович Майданюк

Остання редакція: 2025-11-23

Анотація


Abstract

The theses analyzes statistical methods for anomaly detection in program behavior. It examines three classes of methods: Statistical Process Control (SPC), regression-based models, and density-based approaches (LOF). The principles, advantages, disadvantages, and application areas for each method are analyzed.


Ключові слова


Anomaly Detection; Outlier Detection; Program Behavior; Statistical Methods; Cybersecurity; Intrusion Detection; Statistical Process Control (SPC); CUSUM; EWMA; Time-Series Regression; Local Outlier Factor (LOF).

Посилання


1. Introduction to Anomaly Detection. [Online]. URL: https://www.researchgate.net/publication/390797974 [Accessed: November 18, 2025].

2. Anomaly Detection in Cybersecurity: Techniques, Challenges, and Development Best Practices. [Online]. URL: https://www.apriorit.com/dev-blog/what-is-anomaly-detection-in-cybersecurity [Accessed: November 18, 2025].

3. A Review of Anomaly Detection Strategies to Detect Threats to Cyber-Physical Systems. [Online]. URL: https://www.mdpi.com/2079-9292/12/15/3283 [Accessed: November 18, 2025].

4. The Importance of Features for Statistical Anomaly Detection. [Online]. URL: https://www.usenix.org/system/files/conference/hotcloud15/hotcloud15-goldberg.pdf [Accessed: November 18, 2025].

5. Statistical Methods for Anomaly Detection in Cybersecurity Solutions: Balancing Cost and Efficiency. [Online]. URL: https://www.apriorit.com/dev-blog/anomaly-detection-with-statistical-methods [Accessed: November 18, 2025].

6. A Survey of Anomaly Detection in Cyber-Physical Systems. [Online]. URL: https://arxiv.org/html/2502.13256v1 [Accessed: November 18, 2025].

7. Anomaly detection beats SPC to manage quality. [Online]. URL: https://acerta.ai/blog/spc-vs-anomaly-detection-methods-to-manage-quality/ [Accessed: November 18, 2025].

8. CUSUM and EWMA Control Charts. [Online]. URL: https://www.jmp.com/en/statistics-knowledge-portal/quality-and-reliability-methods/control-charts/cusum-and-ewma-control-charts [Accessed: November 18, 2025].

9. Why Use Statistical Process Control to Reduce Defects? [Online]. URL: https://spc-software.us/why-use-statistical-process-control-to-reduce-defects [Accessed: November 18, 2025].

10. Software Reliability Modeling Incorporating Fault Detection and Fault Correction Processes with Testing Coverage and Fault Amount Dependency. [Online]. URL: https://www.mdpi.com/2227-7390/10/1/60[Accessed: November 18, 2025].

11. ARIMA. [Online]. URL: https://www.geeksforgeeks.org/data-science/model-selection-for-arima/ [Accessed: November 18, 2025].

12. OML-AD: Online Machine Learning for Anomaly Detection in Time Series Data. [Online]. URL: https://arxiv.org/html/2409.09742v1 [Accessed: November 18, 2025].

13. Data-Driven Anomaly Detection Approach for Time-Series Streaming Data. [Online]. URL:  https://www.6sigma.us/six-sigma-in-focus/cusum-charts-detecting-process-shifts/ [Accessed: November 18, 2025].

14. Everything to Know About Residual Analysis. [Online]. URL: https://www.6sigma.us/six-sigma-in-focus/residual-analysis/ [Accessed: November 18, 2025].

15. Density-based methods. [Online]. URL: https://otexts.com/weird/06-density.html [Accessed: November 18, 2025].

16. Deep Learning for Anomaly Detection in Log Data: A Survey. [Online]. URL: https://arxiv.org/pdf/2207.03820 [Accessed: November 18, 2025].

17. On the nature and types of anomalies: a review of deviations in data. [Online]. URL: https://pmc.ncbi.nlm.nih.gov/articles/PMC8331998/ [Accessed: November 18, 2025].

18. A Survey on Explainable Anomaly Detection. [Online]. URL: https://arxiv.org/pdf/2210.06959 [Accessed: November 18, 2025].

Повний текст: PDF