КОНФЕРЕНЦІЇ ВНТУ електронні наукові видання, 
Молодь в науці: дослідження, проблеми, перспективи (МН-2025)

Розмір шрифта: 
AI IN FUTURE OF TAXATION
Polina Kozlovska

Остання редакція: 2025-06-13

Анотація


Tax law is one of the sciences that is difficult to understand for an ordinary citizen, and the law is subject to constant changes and amendments. In today's world of rapid technological development and digitalization, AI tools are becoming increasingly noticeable in many areas. AI technologies can help understand regulations, correctly interpret them, and find current data. The introduction of AI can streamline routine tasks for tax advisors and financial controllers, thanks to fast and effective data analysis. In addition, tools using machine learning and natural language processing optimize tax burdens, detect anomalies in tax returns, and ensure compliance with increasingly complex national and international tax regulations

Ключові слова


Artificial Intelligence, tax law, legal text.

Посилання


  1. Wang, M. (2024). AI Technologies in Modern Taxation: Applications, Challenges, and Strategic Directions. International Journal of Finance and Investment, 1(1), 42-46. 

  1. Alarie, B., Niblett, A., & Yoon, A. H. (2016). Using machine learning to predict outcomes in tax law. Can. Bus. LJ, 58, 231. 

  1. Akinrinola, O., Addy, W. A., Ajayi-Nifise, A. O., Odeyemi, O., & Falaiye, T. (2024). Application of machine learning in tax prediction: A review with practical approaches. Global Journal of Engineering and Technology Advances, 18(02), 102-117. 

  1. Rahman, S., Sirazy, M. R. M., Das, R., & Khan, R. S. (2024). An exploration of artificial intelligence techniques for optimizing tax compliance, fraud detection, and revenue collection in modern tax administrations. International Journal of Business Intelligence and Big Data Analytics, 7(3), 56-80. 

  1. Baghdasaryan, V., Davtyan, H., Sarikyan, A., & Navasardyan, Z. (2022). Improving tax audit efficiency using machine learning: the role of taxpayer’s network data in fraud detection. Applied Artificial Intelligence, 36(1), 2012002.