КОНФЕРЕНЦІЇ ВНТУ електронні наукові видання, Молодь в науці: дослідження, проблеми, перспективи (МН-2022)

Розмір шрифта: 
RESEARCH PROGRESS ON HYDRODYNAMIC PRESSURE OF ASPHALT PAVEMENT
Guo Mingjun, Irina Khomyuk, Viktor Kovalskiy

Остання редакція: 2022-06-16

Анотація


Hydrodynamic pressure is one of the causes of asphalt pavement damage. In this paper, the research status of hydrodynamic pressure on asphalt pavement is summarized, and the causes and influencing factors of hydrodynamic pressure on asphalt pavement are analyzed, among which vehicle speed, traffic load and voidage of asphalt pavement have great influence on hydrodynamic pressure on asphalt pavement. In view of the problems existing in the current research work, some measures are put forward, such as establishing unified test method and corresponding evaluation standard, and developing more scientific and reasonable test equipment.


Ключові слова


asphalt concrete pavement; water damage; hydrodynamic pressure; pore water pressure

Посилання


1. Wei Pengke and LI Zhiyong, “Study on the Damage of Asphalt Concrete under the Action of Hydrodynamic Water Pressure,” D, Chongqing Jiaotong University, 2013.

 

2 Li Shaobo, Zhang Hongchao, and Sun Lijun, “Formation and Simulation of Hydrodynamic Pressure,” J. Tongji Univ. Sci., no. 07, pp. 915–918, 2007.

 

3 V. P. Lysenko et al., “Mobile robot with optical sensors for remote assessment of plant conditions and atmospheric parameters in an industrial greenhouse,” in Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experiments 2021, 2021, vol. 12040, pp. 80–89.

 

4 Dong Qiangzhu, Li Yanwei, Shi Xin, and Li Zhiyong, “Calculation and Analysis of Hydrodynamic Pressure on Road Surface,” Journal of Chang’an University(Natural Science Edition), vol. 33, no. 05. pp. 17–22, 2013.

 

5 P. Kettil, G. Engström, and N.-E. Wiberg, “Coupled hydro-mechanical wave propagation in road structures,” Comput. Struct., vol. 83, no. 21, pp. 1719–1729, Aug. 2005, doi: 10.1016/j.compstruc.2005.02.012.

 

6 M. E. Kutay, A. H. Aydilek, and E. Masad, “Laboratory validation of lattice Boltzmann method for modeling pore-scale flow in granular materials,” Comput. Geotech., vol. 33, no. 8, pp. 381–395, Dec. 2006, doi: 10.1016/j.compgeo.2006.08.002.

 

7 G. Mingjun, “Research of mechanical properties of bituminous concrete at low-temperature,” in Applied Scientific and Technical Research: Proceedings of the IV International Scientific and Practical Conference, 2020, pp. 104–105.

 

8 M. E. Kutay and A. H. Aydilek, “Dynamic effects on moisture transport in asphalt concrete,” J. Transp. Eng., vol. 133, no. 7, pp. 406–414, 2007.

 

9 M. E. Kutay and A. H. Aydilek, “Pore pressure and viscous shear stress distribution due to water flow within asphalt pore structure,” Comput. Civ. Infrastruct. Eng., vol. 24, no. 3, pp. 212–224, 2009.

 

10C.-W. Oh, T.-W. Kim, H.-Y. Jeong, K.-S. Park, and S.-N. Kim, “Hydroplaning simulation for a straight-grooved tire by using FDM, FEM and an asymptotic method,” J. Mech. Sci. Technol., vol. 22, no. 1, pp. 34–40, 2008.

 

11 Q. Xue and L. Liu, “Hydraulic-stress coupling effects on dynamic behavior of asphalt pavement structure material,” Constr. Build. Mater., vol. 43, pp. 31–36, 2013.

 

12 M. H. Hou, Y. Q. Tan, and B. Hu, “Dynamic water effect on the high temperature stability of asphalt mixture,” in Advanced Engineering Forum, 2012, vol. 5, pp. 352–357.

 

13 H. Xu, Y. Tan, and X. Yao, “X-ray computed tomography in hydraulics of asphalt mixtures: Procedure, accuracy, and application,” Constr. Build. Mater., vol. 108, pp. 10–21, 2016.

 

14 H. Xu, F. Chen, X. Yao, and Y. Tan, “Micro-scale moisture distribution and hydrologically active pores in partially saturated asphalt mixtures by X-ray computed tomography,” Constr. Build. Mater., vol. 160, pp. 653–667, 2018.

 

15 Jiang Wangheng, Zhang Xiaoning, and Li Zhi, “Mechanical mechanism of water damage to asphalt mixture based on hydrodynamic pressure simulation test,” China J. Highw. Transp., vol. 24, no. 4, pp. 21–25, 2011.

 

16 D. Yang, “Investigation of the excess pore water pressure inside compacted asphalt mixture by dynamic triaxial tests,” Constr. Build. Mater., vol. 138, pp. 363–371, 2017.

 

17 Gao Junqi, Chen Hao, Ji Tianjian, and Liu Hongyue, “Research on Optical Fiber Sensing Measurement of Hydrodynamic Pressure on Asphalt Pavement,” Transducer Microsyst. Technol., vol. 28, no. 9, pp. 59–61, 2009.

 

18 Ou Jinqiu, “Research on the driving mechanism of hydrodynamic pressure for water damage of asphalt pavement,” Shandong University, 2012.

 

19 Мінцзюнь Г. Overview of the test method for road pavement at high temperatures [Електронний ресурс] / Г. Мінцзюнь, В. П. Ковальський // Матеріали XLIX науково технічної конференції підрозділів ВНТУ, Вінниця, 27 28 квітня 2020 р. Електрон. текст. дані. 2020. Режим доступу: https conferences vntu edu ua index php all fbtegp all fbtegp 2020/ paper view 8817

 

20 Kalafat K. Technical research and development [Text]: collective monograph / Kalafat K., Vakhitova L., Drizhd V., etc. – Іnternational Science Group. – Boston, : Primedia eLaunch 2021. – 616 р.

 

21. Burlakov V. Analysis of foaming agents in the production of foam concrete [Електронний ресурс] / V. Burlakov, G. Mingjun, V. Kovalskiy // Матеріали Міжнародної науково-технічної конференції "Інноваційні технології в будівництві, Вінниця", 10-12 листопада 2020 р. – Електрон. текст. дані. – Вінниця : ВНТУ, 2020. – Режим доступу: https://conferences.vntu.edu.ua/index.php/itb/itb2020/paper/view/10783.

 

22. Mingjun G., Kovalskiy V. P. Research status of road deicing salt :  – Харківський національний університет міського господарства імені ОМ Бекетова, 2020.


Повний текст: PDF