КОНФЕРЕНЦІЇ ВНТУ електронні наукові видання, Молодь в науці: дослідження, проблеми, перспективи (МН-2021)

Розмір шрифта: 
АНАЛІЗ ШТИРЬОВИХ ПОЛЯРИЗАТОРІВ
Олексадн Васильвоич Волинець, Андрій Васильович Булашенко

Остання редакція: 2021-05-01

Анотація


Анотація

У дослідженні поданий аналіз конструкцій та характеристик поляризаційних пристроїв на основі хвилеводів із штирями.

Abstract

The study presents an analysis of the design and characteristics of polarizing devices based on waveguides with posts.

 


Ключові слова


поляризатор, хвилевідний поляризатор, хвилевід, штир, коефіцієнт елиптичності, фазовий зсув

Посилання


1.    Wang J. Spectral efficiency improvement wit 5G technologies: results from field tests / J. Wang, A. Jin, D. Shi, L. Wang, H. Shen, D. Wu, L. Hu, L. Gu, L. Lu, Y. Chen, J. Wang // IEEE Journal on Selected Areas in Communications. – 2017. – Vol. 35, No. 8. – pp. 1867-1875. DOI: 10.1109/JSAC.2017.2713498.

 

2.    Bulashenko A. New traffic model of M2M Technology in 5G wireless sensor networks / A. Bulashenko, S. Piltyay, A. Polishchuk, O. Bulashenko // IEEE 2nd International Conference on Advanced Trends in Information Theory, 25-27 November 2020, Kyiv, Ukraine, pp. 125–131. http://doi.org/10.1109/ATIT50783.2020.9349305.

 

3.    Piltyay S.I. Wireless sensor network connectivity in heterogeneous 5G mobile systems / S.I. Piltyay, A.V. Bulashenko, I.V. Demchenko // IEEE International Conference on Problems of Infocommunications. Science and Technology (PIC S&T), 8-10 October 2020, Kharkiv, Ukraine, pp. 508–513.

 

4.    Bulashenko A.V. Energy efficiency of the D2D direct connection system in 5G networks / A.V. Bulashenko, S.I. Piltyay, I.V. Demchenko // IEEE International Conference on Problems of Infocommunications. Science and Technology, 8-10 October 2020,  Kharkiv, Ukraine, pp. 324–329.

 

5.    Bulashenko A.V. Evaluation of  D2D Communications in 5G networks / A.V. Bulashenko // Visnyk NTUU KPI Seriia – Radiotekhnika, Radioaparatobuduvannia. – 2020. – Vol. 81. – pp. 21–29. (in Ukrainian). http://doi.org/10.20535/RADAP.2020.81.21-29.

 

6.    Bulashenko A.V. Combined criterion for the choice of routing based on D2D technology / A.V. Bulashenko // Radio Electronics, Computer Science, Control. – 2021. – Vol. 1. – pp. 7–13. (in Ukrainian). http://doi.org/10.15588/1607-3274-2021-1-1.

 

7.    Bulashenko A.V. Data upload system using D2D technology in the unlicensed frequency range as part of the 5G communication system / A.V. Bulashenko // Technical Engineering. – 2020. – Vol. 86, No. 2. – pp. 103–107. (in Ukrainian). http://doi.org/10.26642/ten-2020-2(86)-103-107.

 

8.    Bulashenko A.V. Resource allocation for low-power devices of M2M technology in 5G networks / A.V. Bulashenko // KPI Science news. – 2020. – Vol. 3. – pp. 7–13. (In Ukrainian). http://doi.org/10.20535/kpi-sn.2020.3.203863.

 

9.    Myronchuk O. Two-stage channel frequency response estimation in OFDM systems / O. Myronchuk, O. Shpylka, S. Zhuk // Path of Science. – 2020. – Vol. 6, No. 2. – pp. 1001-1007. DOI: 10.22178/pos.55-1.

 

10.     Myronchuk O. Algorithm of channel frequency response estimation in orthogonal frequency division multiplexing systems based on Kalman filter /O. Myronchuk, O. Shpylka, S. Zhuk // IEEE 15th International Conference  on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering, 25-29 Feb. 2020, Lviv-Slavske, Ukraine. DOI:10.1109/TCSET49122.2020.235385.

 

11.    Myronchuk O.Y. Two-Stage Method for Joint Estimation of Information Symbols and Channel Frequency Response in OFDM Communication Systems / O.Y. Myronchuk, A.A. Shpylka, S.Y. Zhuk // Radioelectronics Communications System. – 2020. – Vol. 63. – pp. 418–429. https://doi.org/10.3103/S073527272008004X.

 

12.     Myronchuk A.Y. Channel frequency response estimation method based on pilot’s filtration and extrapolation / A.Y. Myronchuk, O.O. Shpylka, S.Y. Zhuk // Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia. – 2019. – Vol. 78. – pp. 36-42. DOI: 10.20535/RADAP.2019.78.36-42.

 

13.     Piltyay S. Information   resources economy in satellite systems based on new microwave polarizers with tunable posts / S. Piltyay, A. Bulashenko, H. Kushnir, O. Bulashenko  // Path of Science. – 2020. – Vol. 6, No 11. – pp. 5001–5010. http://doi.org/10.22178/pos.55-1.

 

14.     Bulashenko A.V. Compact waveguide polarizer with three antiphase posts / A.V. Bulashenko, S.I. Piltyay, H.S. Kushnir, O.V. Bulashenko // Visnyk VPI. – 2020. – Vol. 5. – pp. 97–104. [In Ukrainian]. DOI: 10.31649/1997-9266-2020-151-5-97-104.

 

15.     Bulashenko A.V. Tunable square waveguide polarizer with irises and posts / A.V. Bulashenko, S.I. Piltyay, Y.I. Kalinichenko, O.V. Bulashenko // Technical Engineering. – 2020. – Vol. 86, no 2. – pp. 108–116. [In Ukrainian]. DOI: 10.26642/ten-2020-2(86)-108-116.

 

16.     Piltyay S. New tunable iris-post square waveguide polarizers for satellite information systems / S. Piltyay, A. Bulashenko,  H. Kushnir, O. Bulashenko //  IEEE 2nd International Conference on Advanced Trends in Information Theory, 25-27 November 2020, Kyiv, Ukraine, pp. 342-348. DOI: 10.1109/ATIT50783.2020.9349357.

 

17.     Bulashenko A. Mathematical modeling of iris-post sections for waveguide filters, phase shifters and polarizers / A. Bulashenko, S. Piltyay,  Ye. Kalinichenko, O. Bulashenko //  IEEE 2nd International Conference on Advanced Trends in Information Theory, 25-27 November 2020, Kyiv, Ukraine, pp. 330-336. DOI: 10.1109/ATIT50783.2020.9349321.

 

18.     Piltyay S. FDTD and FEM simulation of microwave waveguide polarizers  / S. Piltyay, A.Bulashenko, Ye. Herhil, O. Bulashenko // IEEE 2nd Int. Conf. on Advanced Trends in Information Theory, 25-27 November 2020, Kyiv, Ukraine, pp. 132-137. DOI: 10.1109/ATIT50783.2020.9349339.

 

19.     Bulashenko A.V. Multibeam arrays on the basis of Rotman lenses / A.V. Bulashenko // Visnyk NTUU KPI Seriia – Radiotekhnika, Radioaparatobuduvannia. – 2010. – Vol. 42. – pp. 178–186. http://doi.org/10.20535/RADAP.2010.42.178-186.

 

20.     Булашенко А.В. Живлення антенних решіток на основі лінз Ротмана (огляд) / А.В. Булашенко, Ф.Ф. Дубровка // Вісник Сумського державного університету. Серія Технічні науки. - 2010. - №3, Т.2. - С. 113-120.

 

21.     Bulashenko A.V. Beamforming principels of smart antennas / A.V. Bulashenko // Visnik Sumy State University. Seriia Technical sciences. – 2010. – Vol. 1. – pp. 111-120.

 

22.     Bulashenko A.V. Wave matrix technique for waveguide iris polarizers simulation. Theory / A.V. Bulashenko, S.I. Piltyay, I.V. Demchenko // Journal of Nano- and Electronic Physics. – 2020. – Vol. 12, no. 6. – pp. 06026-1–06026-5. DOI: 10.21272/jnep.12(6).06026.

 

23.     Piltyay S.I. Waveguide iris polarizers for Ku-band satellite antenna feeds / S.I. Piltyay, A.V. Bulashenko, I.V. Demchenko // Journal of Nano- and Electronic Physics. – 2020. – Vol. 12, No. 5. pp. 05024-1–05024-5.  http://doi.org/10.21272/jnep.12(5).05024.

 

24.     Bulashenko A.V. Equivalent microwave circuit technique for waveguide iris polarizers development / A.V. Bulashenko, S.I. Piltyay // Visnyk NTUU KPI Seriia – Radiotekhnika, Radioaparatobuduvannia. – 2020. – Vol. 83. – pp. 17–28. http://doi.org/10.20535/RADAP.2020.83.17-28.

 

25.     Piltyay S.I. Compact Ku-band iris polarizers for satellite telecommunication systems / S.I. Piltyay, O.Yu. Sushko,  A.V. Bulashenko, I.V. Demchenko // Telecommunications and Radio Engineering. – 2020. – Vol. 79, no. 19. – pp. 1673–1690. DOI:10.1615/TelecomRadEng.v79.i19.10.

 

26.     Piltyay S.I. Analytical synthesis of waveguide iris polarizers / S.I. Piltyay, A.V. Bulashenko, I.V. Demchenko // Telecommunications and Radio Engineering. – 2020. – Vol. 79, No 18. – pp. 1579–1597.  http://doi.org/10.1615/TelecomRadEng.v79.i18.10.

 

27.     Piltyay S.I. Numerical performance of FEM and FDTD methods for the simulation of waveguide polarizers / S.I. Piltyay, A.V. Bulashenko, Y.Y. Herhil  // Visnik NTUU KPI Seriia – Radiotekhnika, Radioaparatobuduvannia. – 2021. – Vol. 84. – pp. 11–21.  DOI:10.20535/RADAP.2021.84.11-21.

 

28.     Piltyay S.I. Compact polarizers for satellite information systems / S.I. Piltay, A.V. Bulashenko, I.V. Demchenko // IEEE International Conference on Problems of Infocommunications. Science and Technology (PIC S&T). – Kharkiv, Ukraine, 2020. – pp. 350-355.

 

29.     Bulashenko A.V. Analytical technique for iris polarizers development / A.V. Bulashenko, S.I. Piltyay, I.V. Demchenko // IEEE International Conference on Problems of Infocommunications. Science and Technology, 8-10 October 2020, Kharkiv, Ukraine, pp. 464–469.

 

30.     Bulashenko A.V. Optimization of a polarizer based on a square waveguide with irises / A.V. Bulashenko, S.I. Piltyay, I.V. Demchenko // Science-Based Technologies. – 2020. – Vol. 47, No. 3. – pp. 287–297. (in Ukrainian). http://doi.org/10.18372/2310-5461.47.14878.

 

31.     Bulashenko A.V. Waveguide polarizer with three irises for antennas of satellite television systems / A.V. Bulashenko, S.I. Piltyay, H.S. Kushnir, O.V. Bulashenko // Science-Based Technologies. – 2021. – Vol. 49, No. 1. – pp. 39–48. (in Ukrainian). http://doi.org/10.18372/2310-5461.49.15290.

 

32.     Bulashenko A.V. Compact waveguide polarizer with three antiphase posts / A.V. Bulashenko, S.I. Piltyay, H.S. Kushnir, O.V. Bulashenko // Visnyk VPI. – 2020. – Vol. 5. – pp. 97–104. [In Ukrainian]. DOI: 10.31649/1997-9266-2020-151-5-97-104.

 

33.     Piltyay S.I. High performance waveguide polarizer for satellite information systems / S.I. Piltyay, A.V. Bulashenko, Ye.I. Kalinichenko, O.V. Bulashenko // Bulletin of Cherkasy State Technological University. – 2020. – Vol. 4. – pp. 14–26. [In Ukrainian]. DOI: 10.24025/2306-4412.4.2020.217129.

 

34.     Bulashenko A.V. Simulation of compact polarizers for satellite telecommunication systems with the account of irises’ thickness / A.V. Bulashenko, S.I. Piltyay, I.V. Demchenko // KPI Science news. – 2021. – Vol. 1. – pp. 25–33. http://doi.org/10.20535/kpi-sn.2021.1.203863.

 

35.     Булашенко А.В. Конструкція портативного цифрового мегомметра та вимірювача струму витоку / А.В. Булашенко, І.В. Забегалов // Вісник ВПІ. – 2020. –  Вип. 3. –  с. 37–42. https://doi.org/10.31649/1997-9266-2020-150-3-37-42.

 

36.     Bulashenko A.V. Compact waveguide polarizer with three antiphase posts / A.V. Bulashenko, S.I. Piltyay, H.S. Kushnir, O.V. Bulashenko // Visnyk VPI. – 2020. – Vol. 5. – pp. 97–104. [In Ukrainian]. DOI: 10.31649/1997-9266-2020-151-5-97-104.

 

37.     Piltyay S. Information   resources economy in satellite systems based on new microwave polarizers with tunable posts / S. Piltyay, A. Bulashenko, H. Kushnir, O. Bulashenko  // Path of Science. – 2020. – Vol. 6, No 11. – pp. 5001–5010. http://doi.org/10.22178/pos.55-1.

 

38.    Dubrovka F. Boundary problem solution for eigenmodes in coaxial quad-ridged waveguides / F. Dubrovka, S. Piltyay // Information and Telecommunication Science. – 2014. – Vol. 5, no. 1. – pp. 48–61.  DOI: 10.20535/2411-2976.12014.48-61.

 

39.     Dubrovka F. Prediction of eigenmodes cutoff frequencies of sectoral coaxial ridged waveguides / F. Dubrovka, S. Piltyay // IEEE International Conference on Modern Problem of Radio Engineering, Telecommunications and Computer Science, 21-24 February 2012, Lviv, Ukraine.

 

40.     Naydenko V. Evolution of radiopulses radiated by Hertz’s dipole in vacuum / V. Naydenko, S. Piltyay // IEEE International Conference on Mathematical Methods in Electromagnetic, 1-2 July 2008, Odessa, Ukraine. DOI: 10.1109/MMET.2008.4580972.

 

41.     Dubrovka F.F. Eigenmodes analysis of sectoral coaxial ridged waveguides by transverse field-mathing technique. Part 1. Theory. / F.F. Dubrovka, S.I. Piltyay // Visnyk NTUU KPI Seriia – Radiotekhnika, Radioaparatobuduvannia. – 2013. – Vol. 54. – pp. 13–23. http://doi.org/10.20535/RADAP.2013.54.13-23.

 

42.    Dubrovka F. F. Eigenmodes of sectoral coaxial ridged waveguides // F.F. Dubrovka, S.I. Piltyay // Radioelectronics and Communications Systems. — 2012. — Vol. 55, № 6. — P. 239–247. DOI: https://doi.org/10.3103/S0735272712060015.

 

43.    Dubrovka F. F. Eigenmodes of coaxial quad-ridged waveguides. Numerical results // F.F. Dubrovka, S.I. Piltyay // Radioelectronics and Communications Systems. — 2014. — Vol. 57, № 2. — P. 59–69. DOI: https://doi.org/10.3103/S0735272714020010.

 

44.     Dubrovka F. A novel wideband coaxial polarizer / F. Dubrovka, S. Piltyay // IX International Conference on Antenna Theory and Techniques, 16-20 Sept. 2013, Odessa, Ukraine, pp. 473-474. DOI: 10.1109/ICATT.2013.6650816.

 

45.    Dubrovka F. Numerically effective basis functions in integral equation technique for sectoral coaxial ridged waveguides / F. Dubrovka, S. Piltyay // XI International Conference on Mathematical Methods in Electromagnetic Theory, 28-30 Aug. 2012, Kharkiv, Ukraine, pp. 492-495. DOI: 10.1109/MMET.2012.6331195.

 

46.     Dubrovka F. A high performance ultrawideband orthomode transducer and dual-polarized quad-ridged horn antenna based on it / F. Dubrovka, S. Piltyay // IEEE International Conference on Antenna Theory and Techniques, 20-23 Sept. 2011, Lviv, Ukraine, pp. 176-178. DOI: 10.1109/ICATT.2011.6170737.

 

47.     Dubrovka F. Novel high performance choherent dual-wideband orthomode transducer for coaxial horn feeds / F. Dubrovka, S. Piltyay // XI International Conference on Antenna Theory and Techniques, 24-27 May 2017, Kyiv, Ukraine, pp. 277-280. DOI: 10.1109/ICATT.2017.7972642.

 

48.     Bulashenko A.V. Wave matrix technique for waveguide iris polarizers simulation. Theory / A.V. Bulashenko, S.I. Piltyay, I.V. Demchenko // Journal of Nano- and Electronic Physics. – 2020. – Vol. 12, no. 6. – pp. 06026-1–06026-5. DOI: 10.21272/jnep.12(6).06026.

 

49.    Sushko O. Symmetrically fed 1-10 GHz log-periodic dipole antenna array feed for reflector antennas / O. Sushko, S. Piltyay,  F. Dubrovka, // IEEE Ukraine Microwave Week,  21-25 Sept. 2020, Kharkiv, Ukraine. DOI: 10.1109/UkrMW49653.2020.9252778.

 

50.     Dubrovka F. Compact X-band stepped-thickness septum polarizer / F. Dubrovka, S. Piltyay, O. Sushko, R.Dubrovka, M. Lytvyn, S. Lytvyn // IEEE Ukraine Microwave Week,  21-25 Sept. 2020, Kharkiv, Ukraine. DOI: 10.1109/UkrMW49653.2020.9252583.

 

51.     Omelianenko M.Yu. Stopband characteristics improvement of waveguide planar E-plane filters // M.Yu. Omelianenko, T.M. Romanenko, S.Ya. Zhuk, O.V. Turieieva // Radioelectronics and Communications Systems. — 2021. — Vol. 64, № 2. — P. 53–63. DOI: https://doi.org/10.3103/S0735272721020011.

 

52.     Zhuk S.Ya. Synthesis of extremely wide stopband E-plane bandpass filters / S.Ya. Zhuk, M.Y. Omelianenko, T.M. Romanenko, O.V. Tureeva // Visnyk NTUU KPI Seriia – Radiotekhnika, Radioaparatobuduvannia. – 2021. – Vol. 84. – pp. 22–29. http://doi.org/10.20535/RADAP.2021.84.22-29.

 

53.     Tovakch I.O. Adaptive filtration of parameters of the UAV movement on data from its location on the basis the time difference of arrival method / I.O. Tovakch, S.Y. Zhuk // IEEE First Ukraine Conference on Electrical and Computer Engineering, 1-2 June 2017, Kiev, Ukraine. DOI: 10.1109/UKRCON.2017.8100466.

 

54.    Tovkach I.O. Adaptive filtration of parameters of the UAV movement based on the TDOA-measurement sensor networks // I.O. Tovkach, S.Ya Zhuk // Journal of Aerospace Technology and Management. — 2019. — Vol. 11. — e3519. DOI: https://doi.org/10.5028/jatm.v11.1062.

 

55.     Omelianenko M. E-plane stepped-impedance bandpass filter with wide stopband / M. Omelianenko, T. Romanenko // IEEE International Conference on Electronics and Nanotechnology, 22-24 April 2020, Kyiv, Ukraine. DOI: 10.1109/ELNANO50318.2020.9088888.

 

56.     Omelianenko M.Yu. High efficiency waveguide-planar amplifier with spatial power combinig for frequency range 31-39 GHz. // M.Yu. Omelianenko, T.M. Romanenko // Radioelectronics and Communications Systems. — 2019. — Vol. 62. — P. 195–201. DOI: https://doi.org/10.3103/S0735272719050017.

 

57.     Dubrovka F.F., Piltyay S.I. Ultrawideband microwave biconical high-gain antenna for dual-band systems of omnidirectional radio monitoring, Radioelectronics and Communications Systems, vol. 63, no. 12, pp. 619–632, 2020. DOI: 10.3103/S0735272720120028.

 

58.     Dubrovka F.F., Piltyay S.I., Yu.O. Ovsyanik, Dubrovka R.R. Eight-channel directional of orthogonal H21 modes in circular waveguide for X-band quasi-monopulse antenna systems, Radioelectronics and Communications Systems, vol. 63, no. 12, pp. 656–665, 2020. DOI: 10.3103/S0735272720010021.

 

59.     Dubrovka F. Circularly Polarised X-band H11- and H21-modes antenna feed for monopulse autotrackung ground station / F. Dubrovka, S. Martunyuk, R. Dubrovka, M. Lytvyn, S. Lytvyn, Yu. Ovsianyk, S. Piltyay, O. Sushko, O. Zakharchenko  // IEEE Ukraine Microwave Week,  21-25 Sept. 2020, Kharkiv, Ukraine. DOI: 10.1109/UkrMW49653.2020.9252600.

 

60.     Dubrovka F.F. Optimum septum polarizer design for various fractional bandwidths // F.F. Dubrovka, S.I. Piltyay, R.R. Dubrovka, M.M. Lytvyn, S.M. Lytvyn // Radioelectronics and Communications Systems. — 2020.

 

61. Simmons A.J. A compact broad-band microwave quarter-wave plate / A.J. Simmons // Proceedings of the IRE. – 1952. – Vol. 40, nо. 9. – p. 1089–1090. DOI: 10.1109/1952.273879.

 

62. Subbarao B. Compact coaxial-fed CP polarizer / B. Subbarao, V.F. Fusco // IEEE Antennas and Wireless Propagation Letters. – 2004. – Vol. 3. – p. 145–147. DOI: 10.1109/LAWP.2004.831084.

 

63. Subbarao B. Differential phase polarizer used for RCS control / B. Subbarao, V.F. Fusco // IEEE Antennas and Propagation Society Symposium, 20-25 June 2004, Monterey, USA. DOI: 10.1109/APS.2004.1330291.

 

64. Piltyay S. Information resources economy in satellite systems based on new microwave polarizers with tunable posts / S. Piltyay, A. Bulashenko, H. Kushnir, O. Bulashenko // Path of Science. – 2020. – Vol. 6, No 11. – pp. 5001–5010. http://doi.org/10.22178/pos.55-1.


Повний текст: PDF