КОНФЕРЕНЦІЇ ВНТУ електронні наукові видання, 
Актуальні проблеми бойового застосування та експлуатації і ремонту зразків озброєння та військової техніки (2021)

Розмір шрифта: 
FEATURES OF COMBAT USE FOR A SWARM OF DRONES
Анатолій Антонович Шиян, Лілія Олександрівна Нікіфорова

Остання редакція: 2021-11-17

Анотація


The problem of the combat use of a swarm of drones is still at an underexplored level. At the same time, the variety of drones that have lethal weapons is growing. Therefore, the problem arises of controlling a swarm of drones on the battlefield. In this case, a swarm can consist of both the same units and units that have different properties. The purpose of the report is to describe promising approaches for modeling the behavior of a swarm of military drones on a battlefield

Ключові слова


military drone, swarm, model, behavior, battlefield

Посилання


  1. Brambilla M, Ferrante E, Birattari M et al. (2013) Swarm robotics: a review from the swarm engineering perspective. Swarm Intell 7: 1–41.
  2. Sueoka Y, Sato Y, Ishitani M et al. (2019) Analysis of push-forward model for swarm-like collective motions. Artif Life Robotics 24: 460–470.
  3. Ravankar A, Ravankar AA, Hoshino Y. et al. (2020) Safe mobile robot navigation in human-centered environments using a heat map-based path planner. Artif Life Robotics 25: 264–272.
  4. Mayya S,WilsonS, Egerstedt M (2019) Closed-loop task allocation in robot swarms using inter-robot encounters. Swarm Intell 13: 115–143.
  5. Yaguchi Y, Tamagawa K (2020) A waypoint navigation method with collision avoidance using an artificial potential method on random priority. Artif Life Robotics 25: 278–285.
  6. Coppola M, Guo J, Gill E et al. (2019) Provable self-organizing pattern formation by a swarm of robots with limited knowledge. Swarm Intell 13: 59–94.
  7. Jang I, Shin H, Tsourdos A (2018) Local information-based control for probabilistic swarm distribution guidance. Swarm Intell 12: 327–359.
  8. Rausch I, Reina A, Simoens P et al. (2019) Coherent collective behaviour emerging from decentralised balancing of social feedback and noise. Swarm Intell 13: 321–345.
  9. Dousse N, Heitz G, Floreano, D (2016) Extension of a ground control interface for swarms of Small Drones. Artif Life Robotics 21: 308–316.
  10. Wei Y, Hiraga M, Ohkura K et al. (2019) Autonomous task allocation by artificial evolution for robotic swarms in complex tasks. Artif Life Robotics 24: 127–134.
  11. de Melo VV, Banzhaf W (2018) Drone Squadron Optimization: a novel self-adaptive algorithm for global numerical optimization. Neural Comput & Applic 30: 3117–3144.
  12. 13. Najafi M, Ajam H, Jamali V, Diamantoulakis PD, Karagiannidis GK, Schober R (2018) Statistical Modeling of FSO Fronthaul Channel for Drone-Based Networks. 2018 IEEE International Conference on Communications (ICC),Kansas City,MO: 1-7.
  13. Hu J, Bruno A, Zagieboylo D, Zhao M, Ritchken B, Jackson B, Chae Joo Y, Mertil F, Espinosa M, Delimitrou C (2018) To Centralize or Not To Centralize: A Tale of Swarm Coordination. arXiv.org. https://arxiv.org/pdf/1805.01786. Accessed 2 October 2021.
  14. Akram RN, Markantonakis K, Mayes K, Habachi O, Sauveron D, Steyven A, Serge C (2017) Security, privacy and safety evaluation of dynamic and static fleets of drones. IEEE/AIAA 36th Digital Avionics Systems Conference (DASC),St. Petersburg,FL: 1-12.

Повний текст: PDF