VIIK 681
A.JO. Kaao:xxHa
I.A. Kiieona

BUKOPUCTAHHA AETEPMIHAHTIB Y 3BOPOTHUX
MATPUIAX /1 HINOPYBAHHSA ITOBITIOMJIEHD

BinHumpkuit HaIllOHATBHUN TEXHIYHUN YHIBEPCUTET

AHoTanis

Y pobomi pozensanymo euxopucmanis demepmiHanmis npu 064UCIEHHI 360POMHUX MAMPUYb Y 3A0a4aX WUPDDYBAHHS
nosioomnerv. OCHOBHY y8az2y NPUOileHO MAMEMAMUYHUM 3ACA0AM MAMPUYHUX KPUNMOSPADIYHUX AN20pUmMMis, 30Kpema
YMOBAM ICHYBAHHS 360POMHOL Mampuyi ma poii demepminanma 6 npoyecax wugpyeanns u oewugpysanns. Iloxkasano,
WO 3HAYEHHs OeMmepMIHAHMA BGUIHAYAE MOMNCIUBICIb KOPEKMHO20 BIOHOGIEHHS 3aUUPPOBAHO20 NOBIOOMIEHHS.
Hasedeno npuxnadu 3acmocysanis MampuiHux onepayiii y Kpunmozpagpii ma okpecieno Moxiciueocmi ix npoepamnor
peanizayii.

Kurouosi ciioBa: kpunrorpadisi, muQpyBaHHs MOBiIIOMJICHb, MATPHIISA, 3BOPOTHA MATPHIIS, NCTCPMIHAHT, MATPUYHI
omeparii

Abstract

The paper considers the use of determinants in computing inverse matrices for message encryption. Particular
attention is paid to the mathematical foundations of matrix-based cryptographic algorithms, including the conditions for
the existence of an inverse matrix and the role of the determinant in encryption and decryption processes. It is shown that
the value of the determinant determines the possibility of correct recovery of encrypted messages. Examples of applying
matrix operations in cryptography are presented, and the prospects for their software implementation are outlined.

Keywords: cryptography, message encryption, matrix, inverse matrix, determinant, matrix operations

Beryn

CyuacHa kpunrorpadis IIpOKo BUKOPUCTOBY€E MaTeMaTHIHI METOH JIJIs 3a0e3nedeHHsI KOH(1eHITIHHOCTI
Ta niricHocTi iHpopmanii. OHMM 13 TAKMX METO/IB € 3aCTOCYBaHHS MaTPUYHUX IIEPETBOPEHD, 1110 0A3yIOTHCS
Ha arapari JiHiiHo1 anreOpu. OcoOIUBY PoOJib Y IIUX AJITOPUTMAaX BiAIrParOTh 3BOPOTHI MAaTPHIll, OOUHCIICHHS
SIKUX 0€3M0CEPEIHBO MOB’ I3aHE 3 MOHATTIM JETCPMIiHAHTA.

JleTepMiHAHT MaTPHIIi € KIIFOYOBUM €JIEMEHTOM, 1[0 BU3HAYAE MOXKIIMBICTh iICHYBaHHS 3BOPOTHOT MaTpHIIi
Ta, BiJINOBIHO, KOPEKTHICTH TpOIECIiB MHUPpPYBaHHS 1 JemuppyBaHHS MOBIIOMICHb. Y MaTpHUYHHUX
KpunrorpadiqyHuX alropuTMax 3Ha4eHHs IeTepMiHaHTa BIUTUBAE HA HAAIHHICTh H(pyBaHHs Ta BiTHOBJICHHS
MOYaTKOBOTO IMOBiTOMJICHHS. TOMy JOCIHIUKEHHS BHKOPHCTAaHHS AETEPMIHAHTIB y 3BOPOTHUX MATPHISIX €
aKTyaJbHUM 3aBIAHHSIM y KOHTEKCTI MaTeMaTHYHUX OCHOB Kpunrorpadii.

Pe3yabTaTu nocjaiazKeHHs

Po3pobnieno mporpamue 3abe3nedeHHss MoBOO Python (3 BuxopucranHsM 0i0miotekn NumPy) s
peautizanii kpunTorpadivHOro anropuTMy Xiuia.

OCHOBHMMH YMOBaMH €:

e IlIu¢pyBaHHS BUKOHYETHCS METOIOM MHOKEHHS HU(PPOBUX BEKTOPIB TEKCTY HA MATPHUIIIO-KITIOU.

e JlemmudpyBaHHs peaaizyeThCs Yepe3 3HaX0MKEHHS 00epHEeHO0T MaTpHIli (00YMCICHHS IeTePMiHaHTa Ta
HOT0 MyJBTUILTIKaTUBHOI iHBEPCii 3a MOIyJEM JOBXKHUHH aidasirty).

hill_cipher.py:

import numpy as np

--- HAJIAILITYBAHHA ---

ALPHABET = "ABCDEFGHIJKLMNOPQRSTUVWXYZ " # 27 cuMBoI1iB
MODULO = len(ALPHABET)

CHAR TO_INT = {c: i for i, ¢ in enumerate(ALPHABET)}

INT TO _CHAR = {i: ¢ for i, ¢ in enumerate(ALPHABET)}
--- MATEMATHKA ---

def egcd(a, b):
ifa==0: return (b, 0, 1)
else:
g, y, x =egcd(b % a, a)
return (g, x - (b//a) *y,y)

def modinv(a, m):
g, X,y = egcd(a, m)
if g 1= 1: return None
else: return x % m

def get matrix_inverse_mod(M, m):
det = int(np.round(np.linalg.det(M)))
det_inv = modinv(det, m)
if det_inv is None: return None

adj = np.linalg.inv(M) * det

adj = np.round(adj).astype(int)

matrix_inv = (det_inv * adj) % m

return np.round(matrix_inv).astype(int) % m

--- BUIJLSIT I ---

def encrypt(message, key matrix):
n = key matrix.shape[0]
JlonoBHeHHs TpobinaMu
while len(message) % n !=0:
message +=""

numbers = [CHAR TO INT]|c] for ¢ in message]
encrypted numbers = []

print(f"\n{'="*10} ETAII LLIUDPYBAHHS {'=*10}")
print(f"Marpuus kiaroya:\n{key matrix}\n")

for i in range(0, len(numbers), n):
1. bepemo 650K
vector = np.array(numbers[i:i+n])
chars

2. Muoxxumo (JtiHiliHa anreOpa)
dot product = np.dot(key matrix, vector)

3. bepemo momynb
encrypted_vector = dot_product % MODULO

=""join([INT _TO_ CHAR[num] for num in vector])

encrypted_chars =""join([INT_TO_CHAR[num] for num in encrypted vector])

encrypted numbers.extend(encrypted vector)

BUBIJL 14
print(f" ¢ bnoxk '{chars}": {vector}")

print(f" X Muoxenns (Vector * Matrix): {dot product}")
print(f" == Mod {MODULO}: {encrypted vector} ->'{encrypted chars}"")
print("-" * 30)

return encrypted_numbers

def decrypt(encrypted numbers, key matrix):
n = key_matrix.shape[0]
inv_key matrix = get matrix_inverse_mod(key matrix, MODULO)

if inv_key matrix is None: return "[IOMUJIKA MATPUILII"

print(f"\n{'="*10} ETAIT JEHLIM®PYBAHHS {'='*10}")
print(f'O6epuena marpurs (Kmtou”-1 mod 27):\n{inv_key matrix}\n")

decrypted numbers =[]
for i in range(0, len(encrypted numbers), n):
1. bepemo 3ammdpoBaHuil BEKTOP
vector = np.array(encrypted numbers[i:i+n])

2. MHOXXUMO Ha 00epHEHY MaTPHUITO
dot product = np.dot(inv_key matrix, vector)

3. bepemo Moy
decrypted vector = dot product % MODULO

Kopexkuist irst numpy (iHoxi 3anmmtmae float)
decrypted vector = np.round(decrypted vector).astype(int)

chars =""join([INT _TO_CHAR[num] for num in decrypted vector])
decrypted numbers.extend(decrypted vector)

BUBIJT 1A

print(f' % Lludp-Bexrop: {vector}")

print(f" X Muoxenns (Vector * InvMatrix): {dot product}")
print(f* == Mod {MODULOY}: {decrypted vector} ->'{chars}"")
print("-" * 30)

return "" join([INT_TO_ CHAR[int(n)] for n in decrypted numbers])

--- BAITYCK ---
if name ==" main ":
Marpuus 3 nerepminanTom 22 (6e3neuna ajst mod 27)
valid key matrix = np.array([
[1,2,3],
[0, 4, 5],
[1,0,6]
)

user_input = input("\nBexits crnoBo (Hanpuknax, MATH): ")
clean_message = "".join([c for ¢ in user_input.upper() if c in ALPHABET])

if clean_message:

3amyck mporiecy
enc_nums = encrypt(clean_message, valid key matrix)
dec text = decrypt(enc_nums, valid key matrix)

print(f"\ne” ®IHAJIBHUI PE3YJIBTAT: {dec text}")
else:
print("BBeniTs xoua 0 onHy aHIIIHCHKY JiTepy.")
Hwxde Ha puc. | mokakeMo pe3yabTaT HalIoro TOCIiIKEeHHS 3a JOMIOMOTOI0 BUKOPUCTaHHS ICTEPMiHAHTIB
MpH 00YHCIICHHI 3BOPOTHUX MAaTPHIh Y 33a49ax mudpyBaHHs ITOBiIOMICHb.

Beenite cnoeo (Hanpuknag, MATH): Anna

ETAIN WHMDPYBAHHA
MaTpuUA K/Kua:
[[1 2 3]
[@ 4 5]
[1 e 6]]

Bnok 'ANN': [@ 13 13]
»MuokenHA (Vector * Matrix): [65 117 78]
= Mod 27: [11 9 24] -> ‘LIY’

bnok ‘A
MMHokeHHA (Vector * Matrix): [13@ 234 156]
~ Mod 27: [22 18 21] -> 'WSV'

ObepHeHa maTpuuA (Kmou~-1 mod 27):
[[6 24 22]

[26 21 1]

[17 5 18]]

¢ Umpp-pekTop: [11 9 24]
>MHokenHAa (Vector * InvMatrix): [810 499 472]
= Mod 27: [@ 13 13] -> 'ANN’

+ Umpp-pekTop: [22 18 21]

»MuokenHA (Vector * InvMatrix): [1026 971 674]
= Mod 27: [@ 26 26] -> ‘A '

B OTHANGHWIA PE3Y/NILTAT: ANNA

Puc. 1. — 3agavya mm¢pyBaHHS MOBiIOMIICHb.
BucHoBok

VY po6oTi po3nIIHYTO poJib AeTEpMiHaHTa y Tpoleci 0OUMCIIEHHs 3BOPOTHUX MAaTpHLb Ui MU(PPyBaHHS
noBiloMiieHb. [1okazaHo, 10 HEHYILOBUH J€TEPMIHAHT € HEOOXiTHOIO YMOBOIO iCHYBaHHS 3BOPOTHOI MaTPHIIi
Ta 3a0e3rneuye KOPEKTHICTh mpouenyp mupyBaHHS 1 Aemm@pyBaHHS B MaTpUYHUX KpHUIITOrpadiuHUX
ITOpUTMax. 3acTOCYBaHHS Olepaliil Hajg MaTpUISIMUA J03BOJIsiE €(EKTUBHO pEaji30BYBaTH AJITOPUTMH
mudpyBaHHs, 10 TPYHTYIOTHCS HA MAaTEMaTHYHOMY arapari JIiHIHHOT anreOpu.

OtpumaHi pe3yNbTaTH MiATBEPKYIOTh JOIUIBHICTh BUKOPUCTAHHS JICTEPMIHAHTIB Y KpUNTOrpadiqyHuX
3aja4ax Ta ixX IpaKTHYHY 3HAUYLIiCTh JUIA IPOrpaMHO1 peaizauii anropuTMis 3axucty inpopmanii. [lonanpmi

JOCIIKEHHS MOXKYTh OyTH CITPSIMOBaHI Ha aHali3 CTIMKOCTI MATPUYHUX ITU(PIB Ta ONTUMI3AIiI0 00UHCIICHb
y MPUKJIATHAX KPUNTOTpapiuHUX CHCTEMAX.

CIIMCOK BUKOPHUCTAHOI JIITEPATYPU

1. Maremarnuni Metoan kpunrosnorii: Hapuansauit mocioauk [Enexrponnuii pecypc] (Js cTyaeHTiB TeXH. cIell. BUI. HaBd.
3akin.) / [A.J]. Koxyxisceknii, 1.JI. Topbenko, I'I. Taiinyp, O.A. KoxyxiBcbka, B.B. Mapuenko]; M-Bo ocBiTH 1 Hayku YKpaiHH,
JleprxaBHUi yHiBepcuTeT TenekoMmyHikanii. Kuis: [IVT, 2021 — 244 c.

Trappe W., Washington L. C. Introduction to Cryptography with Coding Theory. — Pearson, 2006.

3 Strang G. Linear Algebra and Its Applications. — Brooks/Cole, 2016.

4 Lay D. C. Linear Algebra and Its Applications. — Pearson Education, 2015.

5. Stroustrup B. The C++ Programming Language. — Addison-Wesley, 2013.
6

Deitel P., Deitel H. C++ How to Program. — Pearson Education, 2017.

N

Kanmwowcna Anuna IOpiiena — crynentka rpynu 1KITC — 256, axynerer MeHeKMEHTY Ta iHPOpMaiHHOT
Oe3neku, BiHHUIIbKUIT HAlllOHATBHUN TEXHIYHUN YHiBepcuTeT, M. Binauis, e-mail: kazhnaanna@gmail.com

HaykoBwuii kepiBuuk: Kneona Ipuna Anamoniiena — pHd, noueHt, xadenpa BHINOI MaTeMaTHKH,
Binannbkwii HaIiOHANBHUNA TEXHIYHUM yHiBepcuTeT, M. Binauig, XwmenpHHUIBKE moce, 95, e-mail:
paceka08@vntu.edu.ua

Kayluzhna Anna Yurievna — student of group 1KITC — 25b, Faculty of Management and Information
Security, Vinnytsia National Technical University, Vinnytsia, e-mail: kazhnaanna@gmail.com

Scientific supervisor: Klieopa Iryna Anatoliivna — PhD, Associate Professor, Department of Higher
Mathematics, Vinnytsia National Technical University, Vinnytsia, Khmelnytske Shosse, 95, e-mail:
paceka08@vntu.edu.ua

