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Anomauin

YV mesax poszenanymo cmamucmuuni Memoou eusneienus aHoManit y nogedinyi npozpam. Posensimymo mpu kiacu
Memo?dig: cmamucmuunuil koumpoas npoyecie (SPC), peepecitini mooeni ma nioxoou Ha ocnosi winonocmi (LOF).
Ipoananizosano ixui npunyunu, nepesacu, HeOOXIKU ma cgepu 3acmocy8aHHsL.

KirouoBi cjioBa: BUSBICHHS aHOMAlid, BHSBICHHS BHKHUIIB, MOBEIIHKA MPOrpaM, CTAaTHCTHYHI METO.IH,
KibepOe3mneka, BUSBICHHS BTOPTHEHb, CTAaTHCTUYHUHN KOHTpoIb mporecis (SPC), CUSUM, EWMA, perpecist 9acoBux
pniB, okaneHUH pakrop anomanbHOCTI (LOF).

Abstract

The theses analyzes statistical methods for anomaly detection in program behavior. It examines three classes of
methods: Statistical Process Control (SPC), regression-based models, and density-based approaches (LOF). The
principles, advantages, disadvantages, and application areas for each method are analyzed.
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Introduction

In modern computing, ensuring software reliability and security requires proactive strategies. Central to
this is anomaly detection, the process of identifying events or patterns that deviate significantly from a system's
normal behavior. The relevance of this field is twofold. In cybersecurity, traditional signature-based tools fail
against “zero-day” threats. Anomaly detection systems, however, build a model of normal behavior (like
network traffic or user activity) and flag any significant deviation as a potential, previously unknown attack
[1-2].

In system reliability, this approach provides an early warning system. Post-mortems of service disruptions,
such as those at eBay, often reveal that key performance metrics (like CPU load or memory usage) showed
unusual behavior before a failure became critical. Statistical methods are foundational to this field, offering
advantages over more complex models by being computationally cheaper and, crucially, more interpretable,
which is vital for analysts investigating an alert [3-4].

Fundamental Prerequisite: Feature Engineering

Before any statistical model can be applied, a critical step is feature engineering. “Program behavior” is an
abstract concept; it only becomes measurable through specific, derived features. Raw data, such as individual
CPU logs, network packets, or log messages, is often too noisy and granular to be useful. Feature engineering
is the process of transforming this raw data into meaningful metrics, such as “the number of new IP addresses
connecting per minute” or “the 5-minute average API error rate”. The quality of these features is often more
important than the complexity of the statistical algorithm itself. It is also essential that the data used to train
the “normal” model is clean; if anomalies are present in the training set, the model will incorrectly learn them
as normal, severely reducing its effectiveness [4-6].

Statistical Process Control (SPC)
One of the most established families of statistical methods is Statistical Process Control (SPC), which
originated in manufacturing to monitor if a process is stable or “in control.” While basic SPC charts (like



Shewhart charts) are good at detecting large, abrupt spikes in data , they are poorly suited for many program
anomalies, such as slow memory leaks or low-level attacks, which manifest as small, persistent drifts. For this,
more advanced charts like CUSUM (Cumulative Sum) and EWMA (Exponentially Weighted Moving
Average) are used. Both methods incorporate past data, making them highly sensitive to small shifts. CUSUM
accumulates the sum of all past deviations from a target, weighting them equally, while EWMA calculates a
weighted average that gives exponentially decreasing weight to older data, making it more responsive to recent
changes [7-8].

The primary advantage of these methods is their superior sensitivity to minor, sustained shifts in a process
mean that other charts would miss, allowing for the early detection of issues. They provide objective, data-
driven insights into process performance in real-time [8].

However, SPC methods are not without drawbacks. Their effectiveness is highly dependent on the correct
setting of their statistical parameters. If control limits are not set appropriately, they can be prone to a high rate
of false alarms, which leads to “alert fatigue” and unnecessary disruptions. Furthermore, SPC may be less
effective for highly complex processes with multiple interacting variables and can be more complex to
implement and interpret than simpler charts [9].

In practice, SPC is widely used for monitoring program behavior. It is applied in intrusion detection systems
(IDS) to identify attacks like Denial of Service (DoS) or Remote-to-Local (R2L) by monitoring network traffic
statistics. It is also highly effective for system reliability monitoring, such as tracking API latency, packet
retransmission rates, or even the residuals from other predictive models to detect gradual performance
degradation before it impacts users [10].

Regression-Based Models

Another class of methods uses statistical regression to predict normal behavior. It is important to first
distinguish this from “regression testing,” which is a software engineering quality assurance practice of re-
running old tests to ensure new code changes have not broken existing functionality. Statistical regression, in
this context, involves building a predictive model based on historical data that is assumed to be “normal.”
For program metrics that have time-based dependencies, time-series models like ARIMA (Autoregressive
Integrated Moving Average) are often used to capture trends and seasonality [11].

This model is trained on past data to forecast future values. An anomaly is then identified when the actual
observed value is significantly different from the predicted value. This difference between the observation
and the forecast is known as the residual or prediction error. If a residual is statistically significant (e.g.,
exceeds a predefined threshold), the data point is flagged as an anomaly [12].

The main strength of this approach is its ability to model and account for complex temporal dependencies,
patterns, and seasonalities that simpler methods cannot capture. This makes it highly effective for systems
with natural, predictable cycles. Some regression techniques can also be designed to be “robust,” meaning
their model of “normal” is not overly skewed by a few anomalous data points [11].

These models also have significant limitations. Many, including ARIMA, rely on strong statistical
assumptions, such as the data being stationary (its statistical properties don't change over time), which is not
always true for chaotic program metrics. A major operational risk is “concept drift,” where a slowly
developing anomaly (like a gradual memory leak) is mistakenly absorbed by the model as part of the “new
normal,” effectively hiding the problem. The model's performance can also be sensitive to parameter settings
and the underlying distribution of the data [13].

Regression models are frequently used in cybersecurity to forecast “normal” network traffic volumes or
user activity, with large residuals signaling potential intrusions or DoS attacks. They are also applied in
software engineering for defect prediction, where models estimate the number of expected faults based on code
metrics or testing phase data [14].

Density-Based Methods (Local Outlier Factor)

A third approach, density-based methods, operates on the simple premise: normal data points tend to group
together in dense clusters, while anomalies are isolated points in sparse regions. The Local Outlier Factor
(LOF) is a premier algorithm in this category. It is an unsupervised method, meaning it does not require pre-
labeled “normal” data for training. LOF's unique strength is its ability to find local anomalies—points that are
outliers only in relation to their immediate neighborhood, even if they are not the most extreme points in the
entire dataset [15].

LOF works by assigning an anomaly score to each data point by comparing its local density to the local



densities of its neighbors. It calculates this score based on a ratio: it compares the local reachability density
(LRD) of a point to the average LRD of its “k” nearest neighbors (where 'K’ is a user-defined parameter). A
score of approximately 1 means the point is “normal” and shares a similar density with its neighbors. A score
significantly greater than 1 indicates the point is in a much sparser region than its neighbors, marking it as an
anomaly [16].

The primary advantage of LOF is this ability to identify local outliers that global methods, which average
over the entire dataset, would miss. Because it is unsupervised, it is ideal for real-world scenarios where
labeled anomaly data is rare or non-existent. It also makes no assumptions about the shape of the data clusters
and can identify anomalies in arbitrarily shaped groups [16].

The main drawbacks are computational. The algorithm's complexity can be high, making it slow for very
large datasets. Like many distance-based methods, its performance degrades significantly in high-
dimensional spaces (a problem known as the “curse of dimensionality”), as the concepts of “density” and
“nearest neighbor” become less meaningful. Its results are also sensitive to the user's choice of the 'k’
parameter, and the unbounded nature of the LOF score can make it more difficult to interpret than a simple
probability [17].

LOF is highly effective in unsupervised intrusion detection, as it can identify new, previously unseen
attacks without prior training on them. Studies have shown it is particularly adept at finding subtle attack
types, like User-to-Root (U2R) attacks, that other classifiers often struggle with. It is also applied in dynamic
environments like cloud computing to detect contextual anomalies in system behavior [17].

Conclusions

No single statistical method is universally superior for detecting anomalies in program behavior. The
optimal choice is highly dependent on the context: SPC methods like CUSUM are ideal for detecting small,
persistent drifts in stable metrics; regression models are powerful for forecasting complex, seasonal data; and
density-based methods like LOF excel in unsupervised environments where local context is critical (table 1).

The most significant practical challenges in this field remain the management of false positives, which leads
to “alert fatigue” , and “concept drift,” where models become outdated as a program’s normal behavior evolves.
Furthermore, as systems become more complex, the demand for explainable models — those that can state why
an alert was triggered—is growing. Consequently, the future of anomaly detection likely lies in hybrid models
that combine the strengths of multiple techniques and in adaptive, self-learning systems that can evolve with
the software they monitor [18].

Table 1 — Comparison of Statistical Anomaly Detection Methods

Method Family Key Principle Primary Advantage Key Disadvantage
Statistical Process Detects shifts from a stable High sensitivity to Can k?e prone to _false
process mean by - - alarms; less effective for
Control (SPC) (e.g., incorporating historical small, persistent drifts complex, multivariate
CUSUM, EWMA) P g in a single metric. plex,
data. processes.
Regression-Based Forecasts normal behavior; | Excellent for modeling | Vulnerable to “concept
Models (e.g., flags large prediction errors | complex systems with | drift” (slowly learning an
ARIMA) (residuals) as anomalies. seasonality and trends. anomaly as “normal”).
Identifies anomalies as Unsupervised; excels | High computational cost;
Density-Based isolated points in low- at finding local suffers from the “curse of
Methods (e.g., LOF) | density regions relative to anomalies that global dimensionality” in high-
their local neighbors. methods miss. dimensional data.
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