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Abstract 
Skin pathological images contain essential diagnostic information across various scales. To 

effectively utilize multi-scale features, this study proposes a classification method based on 
multi-scale neural networks. The method involves a variable multi-scale neural network structure 
with a backbone network and multiple scale input branches inserted at different layers, facilitating 
feature extraction and fusion. Two search algorithms—a minimum cost-based search algorithm 
and a hill-climbing search algorithm—are introduced to identify the optimal network structure. 
Experimental results demonstrate that the proposed multi-scale network outperforms original 
networks in skin pathological image classification and that both search algorithms efficiently find 
near-optimal structures with reduced computational costs. 
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1.Intelligent Data Analysis 
The pathological diagnosis of skin pathological images typically requires pathologists with 

certain qualifications and extensive experience. When reviewing skin pathological images, 
pathologists first observe the overall situation of the sections in the low magnification mode of the 
microscope, identify suspicious lesion areas, and then use the high magnification mode to examine 
the morphological characteristics of each cell in the suspected lesion area and specific cell 
densities, usually requiring multiple repetitions of the above process until a diagnosis is reached. 
Obviously, facing a large number of undiagnosed skin pathological images, this manual diagnostic 
method is time-consuming, labor-intensive, and research has shown that there is a 25% diagnostic 
inconsistency among histopathology experts in distinguishing benign nevi from malignant 
melanomas[1]. Using computer-aided means to assist doctors in examining and diagnosing skin 
images can save a lot of manpower, material resources, and financial resources, and improve 
diagnostic efficiency. In recent years, with the powerful capabilities of deep learning, especially 
convolutional neural networks, in the field of computer vision, deep learning-based medical image 



processing has become a hot topic. Many research works on intelligent diagnosis of skin 
pathological images have emerged[2].. In the task of pathological image prediction, deep learning 
methods have achieved performance far beyond traditional methods. 

However, these deep learning methods often directly adopt CNN models for identification, 
but these algorithms do not consider the characteristics of skin pathological images. In skin 
pathological image diagnosis, skin pathological images have multi-semantics, and key diagnostic 
information such as tumor size and extent, histological type, depth of infiltration, mitotic activity, 
margin status, presence of microsatellite or satellite metastases differ significantly in different 
magnification scales. Among them, features such as tumor size and extent, histological type, depth 
of infiltration, etc., need to be analyzed based on the overall situation of pathological tissues, and 
therefore these features are significant in low magnification pathological images. Features such as 
cell mitotic activity, margin status, presence of microsatellite or satellite metastases, etc., require 
detailed observation of lesion cells and immune cells, and therefore these features are significant 
in high magnification pathological images. 

Addressing the problem of how to effectively extract and fuse pathological features at 
different scales, a skin pathological image classification method based on multi-scale neural 
networks is proposed. This method designs a variable multi-scale neural network structure and 
corresponding two multi-scale network structure search algorithms. The variable multi-scale 
neural network consists of a backbone network and parallel inserted multi-scale image input 
branches. The parallel input of multiple scale images enables the network to extract and fuse 
multi-scale image features. Based on the minimum cost-based search algorithm, this algorithm 
tests the influence of inserting input branches at different positions on the current network 
performance by specifying the priority of inserting different branch positions, discards input 
branches and insertion positions that reduce network performance, and selects favorable input 
branches to insert into the network. The hill-climbing search algorithm constructs a search space 
with all possible insertion positions, selects the most favorable position to insert input branches 
from the current search space each time, discards insertion positions that reduce network 
performance, until adding input branches cannot improve network performance or the search 
space is empty. Experimental results with ResNet50[3]., EfficientnetB0[4]., and InceptionV4[5]. as 
backbone networks show that the multi-scale neural network achieves 0.4%∼2.7% higher 
accuracy than the original network. Compared with the exhaustive method, the two multi-scale 
neural network search algorithms can find multi-scale network models close to the optimal 
solution at lower computational costs. Finally, the results of the ablation experiments indicate that 
the performance gain of the variable multi-scale neural network comes from additional image 
inputs. 

 

2. Solving the Task 
2.1 Machine learning model 
To enhance the network's ability to extract multi-scale features, a novel multi-scale input 

neural network structure, called Alterable Multi-Scale Input Convolutional Neural Network 
(AMSICNN), is proposed. In a multi-scale input network, multiple-scale images are used as inputs, 
and the results are fused in the convolutional layers of the model. By learning from images of 
different scales, the model gains the ability to extract deep features of different scales. The 



multi-scale feature input network uses single-scale images as input and extracts features from 
different abstraction levels of convolutional modules, merging them into other layers to achieve 
multi-scale feature fusion. By combining multi-scale input networks and multi-scale feature input 
networks, the proposed AMSICNN achieves multi-scale feature extraction and fusion by inputting 
additional image information into different layers of the network. 

 

 

Fig. 1 Schematic diagram of variable multi-scale neural network 
 
As shown in Figure 1, AMSICNN consists of a backbone network and multiple scale input 

branches. The multi-scale input branches are inserted into the backbone network in a parallel 
manner, and the output features of the branches are combined with the output features of the layer 
they are inserted into and then input into the next convolutional layer (fusion layer) of the 
backbone network. In the backbone network, input branches are only allowed to be inserted after 
downsampling layers, and the number of input branches inserted into AMSICNN can be changed. 
By adjusting the insertion positions and the number of input branches, AMSICNN can better adapt 
to different pathological image recognition tasks. 

As illustrated in Figure 1, each multi-scale input branch consists of a downsampling layer 
and three convolutional layers, with convolutional kernel sizes of 1×1, 3×3, and 1×1, respectively. 
The downsampling layer in the input branch uses bilinear interpolation sampling, and its sampling 
rate is determined by the insertion position. The image is sampled to the same size as the output 
features of the layer it is inserted into. The channel numbers of the three convolutional layers in 
the input branch are determined by the number of channels of the layer they are inserted into, with 
output channel numbers of N/4, N/2, and N, respectively, where N is the number of channels of 
the layer they are inserted into. After processing by the downsampling layer and the three 
convolutional layers, the input image is expanded into a feature vector of the same size as the 
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output features of the layer it is inserted into. The output features of the branch are concatenated 
with the output features of the layer they are inserted into and input into the fusion layer. The input 
channels of the fusion layer are doubled to accommodate the insertion of the branch. 

As a new network structure composed of a backbone network and input branches, the number 
and insertion positions of the input branches determine the network's ability to extract and fuse 
multi-scale features. In AMSICNN, input branches can only be inserted into convolutional layers 
after downsampling layers in the backbone network. Assuming there are M insertion positions in 
the backbone network, theoretically, 2M - 1 AMSICNN structures can be generated. AMSICNN 
has great flexibility in design, allowing for the selection of the optimal AMSICNN structure 
according to different tasks. 

 
2.2 Network Search Algorithm 
For a backbone network with M insertion positions, 2m – 1 AMSICNN structures can be 

generated. For AMSICNN, the impact of input branches on the network varies at different 
insertion positions, and when multiple input branches are inserted, the interaction between input 
branches can have additional effects on the network's performance. 

The influence of multiple input branches on the network is not a simple linear superposition 
of the influence of a single input branch on the network. There is a possibility that inserting input 
branches may lead to a decrease in network performance. These characteristics of AMSICNN 
make it impossible to obtain the optimal AMSICNN structure through simple calculations. Instead, 
exhaustive methods are needed to train and test all AMSICNN networks, requiring a significant 
amount of computational resources. To address the problem of searching for the optimal 
AMSICNN with smaller computational costs, two heuristic search algorithms are proposed in this 
section:  

(1) Minimum Cost-Based Multi-Scale Network Search Algorithm;  
(2) Hill-Climbing Multi-Scale Network Search Algorithm, aiming to quickly find the optimal 

network structure. 
 
2.2.1 Network Search Algorithm Based on Minimal Cost 
To achieve an optimal multi-scale network structure with minimal computational cost, a 

multi-scale network search algorithm based on minimal cost is proposed. The algorithm begins 
with a backbone network and considers all potential insertion positions as the search space. The 
priority of each potential insertion position is determined by its depth in the network, with 
shallower positions having higher priority. The algorithm tests the potential insertion positions in 
order of priority. If inserting an input branch at a given position improves the current network 
performance, the input branch is permanently inserted into the network, and the combined 
network is used for the next step of the search. Otherwise, the insertion position is discarded. In 
this algorithm, each insertion position is tested only once, resulting in a computational complexity 
of O(M  ×  T), where 𝑀	is the number of insertion positions and 	𝑇	is the computational cost of 
training and testing the model once. The detailed process of the algorithm is presented in 
Algorithm 1. 

Given a selected backbone network 𝑓!(. ) and dataset	𝑊	,all potential insertion positions 
	𝑞		in𝑓!(. )constitute the search space 𝑄 = {𝑞", 𝑞#, … , 𝑞$}, where 	𝑚	is the number of potential 
insertion positions in	𝑓!(. ). The positions 	𝑞	are sorted by their depth in the network from 



shallow to deep. The specific steps of the algorithm are as follows: 
1. The optimal network is initialized as the backbone network	𝑓best(. ) = 𝑓!(. )	with the 

highest accuracy being the accuracy of the backbone network Accbest = 𝑓!(𝑊), i.e., the test result 
of the initial network	𝑓!(. )after training on the dataset	𝑊	. 

2. Test the impact of an input branch at the 	𝑖-th insertion position on model performance: 
Insert an input branch at position 𝑞)in the optimal model	𝑓best(. )to form the test model	𝑓())(. ): 

                           (1) 

Train and test the test model	𝑓())(. )on the dataset 𝑊	 to obtain the test model accuracy: 

                                       (2) 

3. Compare the accuracy of the test model with that of the current optimal model. If the test 
model performs better than the current optimal model, update the optimal model and the highest 
accuracy; otherwise, the current optimal model remains unchanged. 

4. Repeat steps (2) and (3) until the search space has been fully explored. 
5. Output the optimal model 𝑓best(. ). 
This approach ensures that the optimal network structure is found with minimal 

computational expense by prioritizing and testing each potential insertion position only once. 
 
2.2.2 Search Algorithm Based on Hill Climbing 
Inspired by the hill climbing approach, a multi-scale network search algorithm based on hill 

climbing is proposed. Starting with a backbone network and constructing the search space from all 
possible insertion positions, the basic idea of the algorithm is to find the optimal insertion position 
𝑞, in the current search space 	𝑄	, insert an input branch at that position, discard input branches 
that degrade network performance, and repeat the process until adding input branches no longer 
improves network performance or the search space is empty. The detailed process of the algorithm 
is presented in Algorithm 2. 

The detailed steps of the algorithm are as follows: 
1. Initialize the optimal network as the backbone network 𝑓best(. ) = 𝑓!(. ) with the highest 

accuracy being the accuracy of the backbone network Accbest = 𝑓!(𝑊). 
2. Test the impact of input branches at all insertion positions 	𝑞	 in 	𝑄		on the performance 

of the current optimal model: Insert an input branch at position 𝑞)  into the optimal model 
𝑓best(. )to form the test model 𝑓())(. ): 

                            (3) 

Train and test the test model 𝑓())(. )on the dataset 	𝑊	to obtain the test model accuracy: 

                                         (4) 

3. Update the optimal model	𝑓best(. ), highest accuracy, and search space based on the test 
model accuracies. Select the test model with the greatest performance improvement as the optimal 
model for the next search round, with its accuracy as the highest accuracy. If no test model shows 
performance improvement, the optimal model remains unchanged. The new search space consists 
of all insertion positions 	𝑞,	that can improve performance, excluding the optimal insertion 
position 𝑞- . 
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4. Repeat steps (2) and (3) until 	𝑄 is empty. 
5. Output the optimal model	𝑓best(. ). 
This method ensures that the optimal network structure is found efficiently by iteratively 

refining the search space and focusing on positions that enhance network performance. 
 

3.Data in the dataset 
The dataset used for validating the AMSICNN model and search algorithms is a multi-center 

melanoma pathology image dataset. It includes 1642 H&E-stained whole-slide images (WSIs) 
collected from three sources: 
（1）Xiangya Hospital of Central South University (CSUXH) 

Melanoma: 239 WSIs 
Compound Nevus: 199 WSIs 
Junctional Nevus: 169 WSIs 
Intradermal Nevus: 188 WSIs 

（2）The Cancer Genome Atlas (TCGA) 
Melanoma: 22 WSIs 

（3）Yale School of Medicine Tissue Microarray Center (YSM) 
Melanoma: 825 WSIs 
Total: 1642 WSIs 

The original WSIs are extremely large (usually >100,000×100,000 pixels) and cannot be 
directly input into the CNN model for inference. The pathological images are preprocessed using a 
parallel method to handle WSIs and generate datasets. The WSIs, at 40× magnification, are 
processed into 512×512 pixel image patches using a sliding window method. All image patches 
are standardized, with blank background patches and non-lesion patches being discarded. Finally, 
the WSI images are divided into training, testing, and validation sets in a 7:1.5:1.5 ratio. The 
validation set is used for hyperparameter tuning, while the training and testing sets are used for 
neural network training and testing. Due to significant differences in the number of image patches 
among the four categories of melanoma, compound nevus, junctional nevus, and intradermal 
nevus, a certain number of image patches are randomly discarded or augmented from each WSI to 
achieve better CNN training results while ensuring the diversity of image patches. Notably, image 
patches at 20×, 10×, and 5× magnifications are downsampled from 40× magnification patches. 

 
Table 1 Multi-Center Dataset 

Data Source Disease Type Number of WSIs 

CSUXH 

Melanoma   239 

Compound Nevus 199 

Junctional Nevus 169   

Intradermal Nevus 188   

TCGA Melanoma 22 

YSM Melanoma 825 

Total 1642 



 

5. Exploratory Data Analysis 
The performance metrics used to evaluate the melanoma pathology image diagnosis model 

include accuracy (Acc), specificity, sensitivity, and F1 score.  
Accuracy (Acc) is the most commonly used metric, representing the ratio of correctly 

classified image patches to all image patches. It indicates the model's ability to make correct 
diagnoses and can be used to evaluate the overall performance of the method. It can be expressed 
as: 

																																										Acc = .!"/.!#
.!"/.!#/.$"/.$#

                          (5) 

Specificity and sensitivity are common features in medical diagnoses. Specificity refers to the 
probability of the diagnostic model not giving false positives, while sensitivity refers to the 
probability of not missing positive cases during diagnosis. The F1 score, which considers both 
precision and recall, is a commonly used evaluation metric for multi-class problems. It can be 
viewed as a harmonic mean of precision and recall. 

 
To validate the classification ability of the AMSICNN model, ResNet50, VGG19, and 

EfficientNetB0 are selected as backbone networks. Tests are conducted on the original backbone 
network, AMSICNN (with all branches inserted), and AMSICNN (optimal structure). Table 3 
shows the performance of all models in the four-class image patch classification task. AMSICNN 
(with all branches) refers to the AMSICNN model with all input branches inserted into the 
backbone network, while AMSICNN (optimal structure) refers to the optimal AMSICNN network 
model under the current backbone network. 

As shown in Table 3, AMSICNN (optimal structure) achieves better performance than the 
original network across all three backbone networks. The improvement is most significant when 
using InceptionV4 as the backbone network, with a 2.6% increase in accuracy (Acc: 0.916 to 
0.942). The improvement is less noticeable with EfficientNetB0 as the backbone network (Acc: 
0.963 to 0.967). On the other hand, when ResNet50 is the backbone network, the F1 score of 
AMSICNN (all branches) is 0.951, and the F1 score of AMSICNN (optimal structure) is 0.953, 
showing close performance. However, when using EfficientNetB0 or InceptionV4 as the backbone 
network, the performance of AMSICNN (all branches) is significantly lower than that of 
AMSICNN (optimal structure), with a gap of up to 5.7% in accuracy for InceptionV4. 

The experimental results indicate that the proposed AMSICNN model can classify melanoma 
and various nevi effectively. The additional scale information input of the AMSICNN network can 
enhance the diagnosis of melanoma. However, the performance improvement of the model with 
additional scale image input depends on the structure of the backbone network. The AMSICNN 
model's performance is 0.3% to 2.7% higher than that of the original network in all three 
backbone networks. Furthermore, the impact of input branch increase on model performance is 
non-linear, necessitating a multi-scale model search algorithm to identify the optimal network 
structure. 

 



Table 3 Performance Comparison of AMSICNN and Original Models 
Backbone 

Network 
Model Structure Accuracy Sensitivity Specificity 

F1 

Score 

ResNet50 

Original Network 0.956 0.929 0.972 0.933 

AMSICNN (All Branches) 0.967 0.951 0.979 0.951 

AMSICNN (Optimal 

Structure)| 
0.969 0.956 0.978 0.953 

EfficientNetB0 

Original Network   0.963 0.942 0.977 0.944 

AMSICNN (All Branches) 0.96 0.932 0.977 0.94 

AMSICNN (Optimal 

Structure)| 
0.967 0.949 0.948 0.949 

InceptionV4 

Original Network   0.916 0.832 0.977 0.883 

AMSICNN (All Branches) 0.885 0.832 0.953 0.857 

AMSICNN (Optimal Structure) 0.942 0.91 0.968 0.918 
 

6. Analysis of the results 
In this study, we addressed the challenge of multiscale feature extraction and fusion in 

pathological images by proposing a variable multiscale neural network architecture and two 
corresponding multiscale network structure search algorithms. The variable multiscale neural 
network consists of a backbone network and one or more parallel multiscale input branches. The 
parallel input of multiscale image information endows the network with the ability to extract and 
fuse multiscale features effectively. To identify the optimal multiscale network structure, we 
introduced two search algorithms: a minimum-cost search algorithm and a hill-climbing search 
algorithm. The minimum-cost search algorithm is designed to find the optimal structure with fixed 
and minimal computational cost, while the hill-climbing search algorithm seeks superior 
multiscale network structures at the expense of slightly higher computational costs. The 
experimental results demonstrated that the variable multiscale neural network outperformed the 
original network in diagnostic performance. Both search algorithms achieved near-optimal 
variable multiscale neural network structures with significantly lower computational costs 
compared to exhaustive search methods. Specifically, the minimum-cost search algorithm 
consistently required the least computational cost. In comparison, the hill-climbing search 
algorithm yielded more optimal multiscale network structures. An ablation study was conducted to 
further investigate the performance improvements of the variable multiscale network. The results 
indicated that the enhanced performance was primarily attributed to the additional multiscale 
image information input. This finding underscores the importance of incorporating multiscale 
inputs in neural networks for pathological image analysis. 

In conclusion, the proposed variable multiscale neural network and the efficient search 
algorithms provide a promising approach for improving diagnostic performance in pathological 
image analysis while maintaining low computational costs. 
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МЕТОД КЛАСИФІКАЦІЇ ПАТОЛОГІЧНИХ ЗОБРАЖЕНЬ  

ШКІРИ 
Вінницький Національний Технічний Університет 

Анотація 
Патологічні зображення шкіри містять важливу діагностичну інформацію за різними шкалами. Для 

ефективного використання різномасштабних ознак у цьому дослідженні запропоновано метод класифікації на 

основі різномасштабних нейронних мереж. Метод включає змінну структуру багатомасштабної нейронної мережі 

з магістральною мережею та багатомасштабними вхідними гілками, вставленими на різних рівнях, що полегшує 

вилучення та злиття ознак. Два алгоритми пошуку - алгоритм пошуку на основі мінімальної вартості та алгоритм 

пошуку на основі сходження на гору - використовуються для визначення оптимальної структури мережі. 

Експериментальні результати показують, що запропонована багатомасштабна мережа перевершує оригінальні 

мережі в класифікації патологічних зображень шкіри і що обидва алгоритми пошуку ефективно знаходять близькі 

до оптимальних структури зі зменшеними обчислювальними витратами. 

 

Ключові слова: патологія шкіри, багатомасштабна нейронна мережа, AMSICNN, глибоке навчання, 

класифікація меланоми, злиття зображень, ResNet50, EfficientNetB0, InceptionV4, багатомасштабний вхід, 

CNN-оптимізація, аналіз медичних зображень, пошук по висоті, пошук за мінімальною вартістю, зображення на 

весь слайд. 
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