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Abstract

Skin pathological images contain essential diagnostic information across various scales. To
effectively utilize multi-scale features, this study proposes a classification method based on
multi-scale neural networks. The method involves a variable multi-scale neural network structure
with a backbone network and multiple scale input branches inserted at different layers, facilitating
feature extraction and fusion. Two search algorithms—a minimum cost-based search algorithm
and a hill-climbing search algorithm—are introduced to identify the optimal network structure.
Experimental results demonstrate that the proposed multi-scale network outperforms original
networks in skin pathological image classification and that both search algorithms efficiently find
near-optimal structures with reduced computational costs.
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1.Intelligent Data Analysis

The pathological diagnosis of skin pathological images typically requires pathologists with
certain qualifications and extensive experience. When reviewing skin pathological images,
pathologists first observe the overall situation of the sections in the low magnification mode of the
microscope, identify suspicious lesion areas, and then use the high magnification mode to examine
the morphological characteristics of each cell in the suspected lesion area and specific cell
densities, usually requiring multiple repetitions of the above process until a diagnosis is reached.
Obviously, facing a large number of undiagnosed skin pathological images, this manual diagnostic
method is time-consuming, labor-intensive, and research has shown that there is a 25% diagnostic
inconsistency among histopathology experts in distinguishing benign nevi from malignant
melanomas!") Using computer-aided means to assist doctors in examining and diagnosing skin
images can save a lot of manpower, material resources, and financial resources, and improve
diagnostic efficiency. In recent years, with the powerful capabilities of deep learning, especially
convolutional neural networks, in the field of computer vision, deep learning-based medical image



processing has become a hot topic. Many research works on intelligent diagnosis of skin
pathological images have emerged?". In the task of pathological image prediction, deep learning
methods have achieved performance far beyond traditional methods.

However, these deep learning methods often directly adopt CNN models for identification,
but these algorithms do not consider the characteristics of skin pathological images. In skin
pathological image diagnosis, skin pathological images have multi-semantics, and key diagnostic
information such as tumor size and extent, histological type, depth of infiltration, mitotic activity,
margin status, presence of microsatellite or satellite metastases differ significantly in different
magnification scales. Among them, features such as tumor size and extent, histological type, depth
of infiltration, etc., need to be analyzed based on the overall situation of pathological tissues, and
therefore these features are significant in low magnification pathological images. Features such as
cell mitotic activity, margin status, presence of microsatellite or satellite metastases, etc., require
detailed observation of lesion cells and immune cells, and therefore these features are significant
in high magnification pathological images.

Addressing the problem of how to effectively extract and fuse pathological features at
different scales, a skin pathological image classification method based on multi-scale neural
networks is proposed. This method designs a variable multi-scale neural network structure and
corresponding two multi-scale network structure search algorithms. The variable multi-scale
neural network consists of a backbone network and parallel inserted multi-scale image input
branches. The parallel input of multiple scale images enables the network to extract and fuse
multi-scale image features. Based on the minimum cost-based search algorithm, this algorithm
tests the influence of inserting input branches at different positions on the current network
performance by specifying the priority of inserting different branch positions, discards input
branches and insertion positions that reduce network performance, and selects favorable input
branches to insert into the network. The hill-climbing search algorithm constructs a search space
with all possible insertion positions, selects the most favorable position to insert input branches
from the current search space each time, discards insertion positions that reduce network
performance, until adding input branches cannot improve network performance or the search
space is empty. Experimental results with ResNet508!, EfficientnetB0M!, and InceptionV4l®! as
backbone networks show that the multi-scale neural network achieves 0.4%~2.7% higher
accuracy than the original network. Compared with the exhaustive method, the two multi-scale
neural network search algorithms can find multi-scale network models close to the optimal
solution at lower computational costs. Finally, the results of the ablation experiments indicate that
the performance gain of the variable multi-scale neural network comes from additional image

inputs.

2. Solving the Task

2.1 Machine learning model

To enhance the network's ability to extract multi-scale features, a novel multi-scale input
neural network structure, called Alterable Multi-Scale Input Convolutional Neural Network
(AMSICNN), is proposed. In a multi-scale input network, multiple-scale images are used as inputs,
and the results are fused in the convolutional layers of the model. By learning from images of
different scales, the model gains the ability to extract deep features of different scales. The



multi-scale feature input network uses single-scale images as input and extracts features from
different abstraction levels of convolutional modules, merging them into other layers to achieve
multi-scale feature fusion. By combining multi-scale input networks and multi-scale feature input
networks, the proposed AMSICNN achieves multi-scale feature extraction and fusion by inputting
additional image information into different layers of the network.
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Fig. 1 Schematic diagram of variable multi-scale neural network

As shown in Figure 1, AMSICNN consists of a backbone network and multiple scale input
branches. The multi-scale input branches are inserted into the backbone network in a parallel
manner, and the output features of the branches are combined with the output features of the layer
they are inserted into and then input into the next convolutional layer (fusion layer) of the
backbone network. In the backbone network, input branches are only allowed to be inserted after
downsampling layers, and the number of input branches inserted into AMSICNN can be changed.
By adjusting the insertion positions and the number of input branches, AMSICNN can better adapt
to different pathological image recognition tasks.

As illustrated in Figure 1, each multi-scale input branch consists of a downsampling layer
and three convolutional layers, with convolutional kernel sizes of 1x1, 3x3, and 1x1, respectively.
The downsampling layer in the input branch uses bilinear interpolation sampling, and its sampling
rate is determined by the insertion position. The image is sampled to the same size as the output
features of the layer it is inserted into. The channel numbers of the three convolutional layers in
the input branch are determined by the number of channels of the layer they are inserted into, with
output channel numbers of N/4, N/2, and N, respectively, where N is the number of channels of
the layer they are inserted into. After processing by the downsampling layer and the three
convolutional layers, the input image is expanded into a feature vector of the same size as the



output features of the layer it is inserted into. The output features of the branch are concatenated
with the output features of the layer they are inserted into and input into the fusion layer. The input
channels of the fusion layer are doubled to accommodate the insertion of the branch.

As a new network structure composed of a backbone network and input branches, the number
and insertion positions of the input branches determine the network's ability to extract and fuse
multi-scale features. In AMSICNN, input branches can only be inserted into convolutional layers
after downsampling layers in the backbone network. Assuming there are M insertion positions in
the backbone network, theoretically, 2™ - 1 AMSICNN structures can be generated. AMSICNN
has great flexibility in design, allowing for the selection of the optimal AMSICNN structure
according to different tasks.

2.2 Network Search Algorithm

For a backbone network with M insertion positions, 2” — 1 AMSICNN structures can be
generated. For AMSICNN, the impact of input branches on the network varies at different
insertion positions, and when multiple input branches are inserted, the interaction between input
branches can have additional effects on the network's performance.

The influence of multiple input branches on the network is not a simple linear superposition
of the influence of a single input branch on the network. There is a possibility that inserting input
branches may lead to a decrease in network performance. These characteristics of AMSICNN
make it impossible to obtain the optimal AMSICNN structure through simple calculations. Instead,
exhaustive methods are needed to train and test all AMSICNN networks, requiring a significant
amount of computational resources. To address the problem of searching for the optimal
AMSICNN with smaller computational costs, two heuristic search algorithms are proposed in this
section:

(1) Minimum Cost-Based Multi-Scale Network Search Algorithm;

(2) Hill-Climbing Multi-Scale Network Search Algorithm, aiming to quickly find the optimal
network structure.

2.2.1 Network Search Algorithm Based on Minimal Cost

To achieve an optimal multi-scale network structure with minimal computational cost, a
multi-scale network search algorithm based on minimal cost is proposed. The algorithm begins
with a backbone network and considers all potential insertion positions as the search space. The
priority of each potential insertion position is determined by its depth in the network, with
shallower positions having higher priority. The algorithm tests the potential insertion positions in
order of priority. If inserting an input branch at a given position improves the current network
performance, the input branch is permanently inserted into the network, and the combined
network is used for the next step of the search. Otherwise, the insertion position is discarded. In
this algorithm, each insertion position is tested only once, resulting in a computational complexity
of O(M X T), where M is the number of insertion positions and T is the computational cost of
training and testing the model once. The detailed process of the algorithm is presented in
Algorithm 1.

Given a selected backbone network f;(.) and dataset W ,all potential insertion positions
q infy(.)constitute the search space Q = {qy,qz, ---, @}, Where mis the number of potential
insertion positions in fy(.). The positions q are sorted by their depth in the network from



shallow to deep. The specific steps of the algorithm are as follows:

1. The optimal network is initialized as the backbone network fi.(-) = fo(.) with the
highest accuracy being the accuracy of the backbone network Accy.q = fo (W), i.e., the test result
of the initial network f; (. )after training on the dataset W .

2. Test the impact of an input branch at the i-th insertion position on model performance:
Insert an input branch at position g;in the optimal model fi: (. )to form the test model f{;)(.):

iy () = foest O+ Soranen (@)() (1)

Train and test the test model f(;) (. Jon the dataset W to obtain the test model accuracy:
Acc; = .f(i)(W) (2)

3. Compare the accuracy of the test model with that of the current optimal model. If the test
model performs better than the current optimal model, update the optimal model and the highest
accuracy; otherwise, the current optimal model remains unchanged.

4. Repeat steps (2) and (3) until the search space has been fully explored.

5. Output the optimal model fiqs(.).

This approach ensures that the optimal network structure is found with minimal

computational expense by prioritizing and testing each potential insertion position only once.

2.2.2 Search Algorithm Based on Hill Climbing

Inspired by the hill climbing approach, a multi-scale network search algorithm based on hill
climbing is proposed. Starting with a backbone network and constructing the search space from all
possible insertion positions, the basic idea of the algorithm is to find the optimal insertion position
qi in the current search space @, insert an input branch at that position, discard input branches
that degrade network performance, and repeat the process until adding input branches no longer
improves network performance or the search space is empty. The detailed process of the algorithm
is presented in Algorithm 2.

The detailed steps of the algorithm are as follows:

1. Initialize the optimal network as the backbone network fi.o (.) = fo(.) with the highest
accuracy being the accuracy of the backbone network Accpese = fo (W).

2. Test the impact of input branches at all insertion positions g in Q on the performance
of the current optimal model: Insert an input branch at position g; into the optimal model
foest(- )to form the test model fi;(.):

i) = Foest O+ Soranen (@)() 3)

Train and test the test model f;(.)on the dataset W to obtain the test model accuracy:
Acc; = f,(W) “

3. Update the optimal model fi. (. ), highest accuracy, and search space based on the test
model accuracies. Select the test model with the greatest performance improvement as the optimal
model for the next search round, with its accuracy as the highest accuracy. If no test model shows
performance improvement, the optimal model remains unchanged. The new search space consists
of all insertion positions q; that can improve performance, excluding the optimal insertion
position g;.



4. Repeat steps (2) and (3) until Q is empty.

5. Output the optimal model fiqq ().

This method ensures that the optimal network structure is found efficiently by iteratively
refining the search space and focusing on positions that enhance network performance.

3.Data in the dataset

The dataset used for validating the AMSICNN model and search algorithms is a multi-center
melanoma pathology image dataset. It includes 1642 H&E-stained whole-slide images (WSIs)
collected from three sources:

(1) Xiangya Hospital of Central South University (CSUXH)
Melanoma: 239 WSIs
Compound Nevus: 199 WSIs
Junctional Nevus: 169 WSIs
Intradermal Nevus: 188 WSIs
(2) The Cancer Genome Atlas (TCGA)
Melanoma: 22 WSIs
(3) Yale School of Medicine Tissue Microarray Center (YSM)
Melanoma: 825 WSIs
Total: 1642 WSIs

The original WSIs are extremely large (usually >100,000x100,000 pixels) and cannot be
directly input into the CNN model for inference. The pathological images are preprocessed using a
parallel method to handle WSIs and generate datasets. The WSIs, at 40x magnification, are
processed into 512x512 pixel image patches using a sliding window method. All image patches
are standardized, with blank background patches and non-lesion patches being discarded. Finally,
the WSI images are divided into training, testing, and validation sets in a 7:1.5:1.5 ratio. The
validation set is used for hyperparameter tuning, while the training and testing sets are used for
neural network training and testing. Due to significant differences in the number of image patches
among the four categories of melanoma, compound nevus, junctional nevus, and intradermal
nevus, a certain number of image patches are randomly discarded or augmented from each WSI to
achieve better CNN training results while ensuring the diversity of image patches. Notably, image
patches at 20%, 10%, and 5% magnifications are downsampled from 40x magnification patches.

Table 1 Multi-Center Dataset

Data Source Disease Type Number of WSIs
Melanoma 239
Compound Nevus 199
CSUXH
Junctional Nevus 169
Intradermal Nevus 188
TCGA Melanoma 22
YSM Melanoma 825

Total 1642




S. Exploratory Data Analysis

The performance metrics used to evaluate the melanoma pathology image diagnosis model
include accuracy (Acc), specificity, sensitivity, and F1 score.

Accuracy (Acc) is the most commonly used metric, representing the ratio of correctly
classified image patches to all image patches. It indicates the model's ability to make correct
diagnoses and can be used to evaluate the overall performance of the method. It can be expressed
as:

th+NtTL

ACC -
th+Ntn+pr+an

©)

Specificity and sensitivity are common features in medical diagnoses. Specificity refers to the
probability of the diagnostic model not giving false positives, while sensitivity refers to the
probability of not missing positive cases during diagnosis. The F1 score, which considers both
precision and recall, is a commonly used evaluation metric for multi-class problems. It can be

viewed as a harmonic mean of precision and recall.

To validate the classification ability of the AMSICNN model, ResNet50, VGG19, and
EfficientNetBO0 are selected as backbone networks. Tests are conducted on the original backbone
network, AMSICNN (with all branches inserted), and AMSICNN (optimal structure). Table 3
shows the performance of all models in the four-class image patch classification task. AMSICNN
(with all branches) refers to the AMSICNN model with all input branches inserted into the
backbone network, while AMSICNN (optimal structure) refers to the optimal AMSICNN network
model under the current backbone network.

As shown in Table 3, AMSICNN (optimal structure) achieves better performance than the
original network across all three backbone networks. The improvement is most significant when
using InceptionV4 as the backbone network, with a 2.6% increase in accuracy (Acc: 0.916 to
0.942). The improvement is less noticeable with EfficientNetBO as the backbone network (Acc:
0.963 to 0.967). On the other hand, when ResNet50 is the backbone network, the F1 score of
AMSICNN (all branches) is 0.951, and the F1 score of AMSICNN (optimal structure) is 0.953,
showing close performance. However, when using EfficientNetB0 or InceptionV4 as the backbone
network, the performance of AMSICNN (all branches) is significantly lower than that of
AMSICNN (optimal structure), with a gap of up to 5.7% in accuracy for InceptionV4.

The experimental results indicate that the proposed AMSICNN model can classify melanoma
and various nevi effectively. The additional scale information input of the AMSICNN network can
enhance the diagnosis of melanoma. However, the performance improvement of the model with
additional scale image input depends on the structure of the backbone network. The AMSICNN
model's performance is 0.3% to 2.7% higher than that of the original network in all three
backbone networks. Furthermore, the impact of input branch increase on model performance is
non-linear, necessitating a multi-scale model search algorithm to identify the optimal network

structure.



Table 3 Performance Comparison of AMSICNN and Original Models

Backbone F1
Model Structure Accuracy Sensitivity  Specificity
Network Score
Original Network 0.956 0.929 0.972 0.933
AMSICNN (All Branches) 0.967 0.951 0.979 0.951
ResNet50
AMSICNN (Optimal
0.969 0.956 0.978 0.953
Structure)|
Original Network 0.963 0.942 0.977 0.944
AMSICNN (All Branches) 0.96 0.932 0.977 0.94
EfficientNetB0
AMSICNN (Optimal
0.967 0.949 0.948 0.949
Structure)|
Original Network 0.916 0.832 0.977 0.883
InceptionV4 AMSICNN (All Branches) 0.885 0.832 0.953 0.857
AMSICNN (Optimal Structure)  0.942 0.91 0.968 0.918

6. Analysis of the results

In this study, we addressed the challenge of multiscale feature extraction and fusion in
pathological images by proposing a variable multiscale neural network architecture and two
corresponding multiscale network structure search algorithms. The variable multiscale neural
network consists of a backbone network and one or more parallel multiscale input branches. The
parallel input of multiscale image information endows the network with the ability to extract and
fuse multiscale features effectively. To identify the optimal multiscale network structure, we
introduced two search algorithms: a minimum-cost search algorithm and a hill-climbing search
algorithm. The minimum-cost search algorithm is designed to find the optimal structure with fixed
and minimal computational cost, while the hill-climbing search algorithm seeks superior
multiscale network structures at the expense of slightly higher computational costs. The
experimental results demonstrated that the variable multiscale neural network outperformed the
original network in diagnostic performance. Both search algorithms achieved near-optimal
variable multiscale neural network structures with significantly lower computational costs
compared to exhaustive search methods. Specifically, the minimum-cost search algorithm
consistently required the least computational cost. In comparison, the hill-climbing search
algorithm yielded more optimal multiscale network structures. An ablation study was conducted to
further investigate the performance improvements of the variable multiscale network. The results
indicated that the enhanced performance was primarily attributed to the additional multiscale
image information input. This finding underscores the importance of incorporating multiscale
inputs in neural networks for pathological image analysis.

In conclusion, the proposed variable multiscale neural network and the efficient search
algorithms provide a promising approach for improving diagnostic performance in pathological

image analysis while maintaining low computational costs.
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10. A. T'opuyk
B. M. [1y6oBoii
1. Yxao

METO/ KITACU®DIKALII ITATOJIOTTYHHX 305PAXKEHD

LIKIPU

Binnnneknit Hanionaneuuii Texniunuii YHiBepcuteT

AHoOTAaLIA

INarosnoriuni 300pa)KeHHS MIKIpU MICTATh BaXJIMBY [iarHOCTUYHY iH(oOpMalil0 3a pisHMMM mKazamu. Js
e(eKTHBHOr0 BMKOPHUCTAHHS Pi3HOMAcIITaOHMX O3HAK y LIbOMY JOCIIJKEHHI 3alpONOHOBAHO MeToJ Kiacudikauii Ha
OCHOBI pi3HOMAcCIITaOHUX HEHPOHHUX Mepex. MeTo 1 BKIIIoUae 3MiHHY CTPYKTypy OaraTomacitabHOl HEHpOHHOT Mepeski
3 MaricTpajbHOIO Mepexero Ta 6araToMacliTaOHUMU BXIJAHMMH T'UIKAMH, BCTaBIICHUMU Ha Pi3HUX PIBHSAX, IO MOJIETINYE
BUJIYYEHHS Ta 3JIMTTs O3HAK. JIBa alrOPUTMHU IOIIYKY - aITOPUTM IOIIYKY Ha OCHOBI MiHIMaJIbHOI BapTOCTI Ta aIrOpPUTM
MOIIYKYy HAa OCHOBI CXO/UKEHHs HAa TrOpY - BHUKOPUCTOBYIOTHCS [UISI BU3HAYEHHS ONTUMAIIBHOI CTPYKTYpH MEpexi.
ExcniepuMeHTanbHi pe3ysbTaTH MOKA3yIOThb, 110 3alpONOHOBaHA OararoMaciiTabHa Mepeka NepeBepllye OpUIiHaIbHI
Mepexi B ki1acu(ikalil NaTonoriyHuX 300pakeHb MIKIpH 1 1[0 00MBa aIrOPUTMH IOLIYKY €(EKTHBHO 3HAXOAATh ONU3bKI

J0 ONITUMAJIbHUX CTPYKTYpHU 31 3MEHIIEHUMHU 00YHCITIOBAIBHUMH BUTpaTaMu.

KuarouoBi cmoBa: marosoris mkipu, OaratomacmrabHa HelipoHHa Mepexka, AMSICNN, rimGoke HaB4YaHHS,
kinacudikamis MenaHomu, 3IHTTS 300paxeHb, ResNet50, EfficientNetB0O, InceptionV4, GararomacmTaOHuI BXif,
CNN-onruMizauisi, aHaii3 MEAUYHUX 300pakeHb, MOLIYK 110 BUCOTI, MOIIYK 32 MiHIMaJbHOIO BapTICTIO, 300pakeHHs Ha

BECh CJAMI.
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