UDC 004
V.0O. Denysiuk
A.A. Polishchyk

SOFTWARE IMPLEMENTATION AND RESEARCH OF QUICK
SORTING OF DATA ARRAYS BY OPEN MPI

Vinnytsia National Technical University

AHoTanis
Mamepianu npucesueni po3pobyi ma mecmysanuI0 npopaAmMHOi peanizayii 0 COpMy8aHHA MACUBY eleMeHmis Ha
OCHO8I NapanenvbHo2o wWeuoKko2o copmyeanns 3 euxopucmauuam Open MPL. [lpoepamna peanizayis ooszeonse
ompumamu 8i0COpmoeary RNOCLO0BHICMb — eNeMeHmie MAacugy ma GUMIPAMU 4aAC GUKOHAHHA COPMYEANHA OJA
ROOANLULUX OOCTIOCEHD.
Kuarouosi ciioBa: arcopumm, npoepama, Open MPI, napanenvnuti ancopumm, weuoke copmysans

Abstract
The materials are devoted to the development and testing of a software implementation for sorting an array of
elements based on parallel quicksort by Open MPI. The software implementation allows you to get a sorted sequence
of array elements and measure the sorting execution time for further research.

Keywords: algorithm, program, Open MPI, parallel algorithm, quick sorting.

Introduction

The relevance is that the task of sorting arrays is one of the most important, because its purpose is to
facilitate further processing of certain data and search tasks. Sorting is an integral part of working with
almost any type of information, which ensures its classification and analysis [1].

The time complexity of sorting algorithms and the amount of memory used for sorting significantly
affect the efficiency of computer data processing [1]. The subject of the work is a parallel algorithm for fast
sorting of data arrays using Open MPI [2].

In contrast to the traditional sequential algorithm, this algorithm can be simultaneously executed on
many computing devices, followed by combining the obtained results to obtain the correct overall result.
The purpose of the work is to develop a software product that is ready for use.

Mathematical modeling of the parallel quick sorting algorithm

The quick sort algorithm can be implemented both in an array and in a doubly linked list. Quicksort is a
comparison-based algorithm and is not stable. The running time of the sorting algorithm depends on the
balance that characterizes the partition. Balance, in turn, depends on which element is chosen as a reference
(relative to which element the division is performed) [3].

The parallel quicksort algorithm is optimized as follows. Instead of doubling the number of processes at
each step, the approach uses n number of processes throughout the algorithm to find the reference element
and reorder the list.

All these processes are performed simultaneously at each step of sorting the lists. A parallel algorithm
model is developed by considering the data partitioning strategy and the processing method and applying
an appropriate strategy to reduce interaction.

Open MPI and the following C++ libraries were used to perform parallel actions: <omp.h>, <iostream>,
<chrono>, <time.h>, <random> [4].

Testing the parallel quicksort algorithm
Two array sorting algorithms were tested for n values from 10 to 1,000,000. Each of the array elements
varies from 1 to 999 (Table 1).
The parallel execution time is O(logn). The total time complexity is 6(nlogn). The developed algorithm
can work on parallel processors and runs much faster for large n.

Table 1
Time to sort an array

Elements in the Array Quicksort (ms) Parallel Quicksort (ms)
10 0,000 656 0,000 656
100 0,068 56 0,069265
1000 0,719 220 0,708635
10 000 81,1358 7,2634
100 000 285,707 0 28,1468
1000 000 3279,6305 153,3212
Conclusions

The result of the work is a ready-made parallel algorithm for fast sorting of data arrays by Open MPI.
Testing confirmed the correctness of theoretical studies. In the future, it is worth investigating the
algorithm for sorting multidimensional data arrays.

In such a sorting algorithm, it is necessary to add an algorithm for dividing the array into sublists. For
further testing of algorithms for sorting data arrays, it is necessary to create a program with the ability to
generate a multidimensional array with random values by size.

REFERENCES
1. C.B. Komsnenko, B. O. Jlenucrok, H. I1. FOpuyk. Iuckperauii anani3. Yactunal. HaBuansHuii mociOHUK. BiHHUI:
BHAY, 2019.
Open MPI documentation. URL.: https://www.open-mpi.org/
Parallel Quick Sort. URL.: https://iq.opengenus.org/parallel-quicksort/
4. C++. URL: https://en.wikipedia.org/wiki/C%2B%2B

N

w

Jenucrok Banepiit Onekcandpoguu, K.T.H., JOICHT, NOUEHT Kadeapn KOMITIOTEpHUX HAyK, BiHHUIbKHUN
HAIlIOHANBHHUI TeXHIYHUIA yHiBepcuteT, Binnuus, Ykpaina, e-mail: vad64@i.ua.

Ioniviyyx Anamoniii Anopinioeuy, crynent, rpyna 2KH-22M, QaxynbreT iHTeNeKTyalbHUX iH(OpPMAIiHHNX
TEXHOJIOTiH Ta aBTOMaTH3alii, BiHHWIbKUI HAlllOHATEHUH TeXHIYHUN yHiBepcuTeT, BinHMI, YKpaina.

Denysiuk Valerii Olexandrovich, PhD, assistant professor of Computer Sciences Department, Vinnytsia National
Agrarian University, Vinnytsia, Ukraine, e-mail: vad64@i.ua.

Polishchyk Anatoly Andriyovich, student, Faculty of Intellectual Information Technologies and Automation,
Vinnytsia National Agrarian University, Vinnytsia, Ukraine.

https://www.open-mpi.org/
https://iq.opengenus.org/parallel-quicksort/
https://en.wikipedia.org/wiki/C%2B%2B
mailto:vad64@i.ua
mailto:vad64@i.ua

