YJIK 004.855.5+004.932.2
D.V. Maliovanyi
I.V. Bogach

INVESTIGATION OF IMPACT OF CONVOLUTIONS ON
PREDICTION PROBABILITY ON EXAMPLE OF HUMAN
GESTURES LANGUAGE DATASET

BiHHULIBKH HAI[IOHATBHUNA TEXHIYHUNA YHIBEPCHTET

AHoTAaIiA:

Hamny 0onogiov npucesaueno 00CaioHceHHI0 ma NOPIGHARHIO KOPenAYii epeKmueHocmi npocHo3y8anH s HeUPOHHOT
Mepedici ma KinbKicmio wapie 320pmku ma ix cmpykmypoio. 3a cy6’exm 00cniodicentst 8351Mo HEUPOHHY MepPeHCy, Wo
PO3Ni3HAE 300paAXHCEHHS MOBU IHCECMIS.

KurouoBi ciioBa: HeiipoHHa Mepexa, Iap 3ropTKH, (GiTbTp, po3mi3HABaHHS, HABYAHHS MOJIENI, TaTACET, TOYHICTh Ha
TpEeHYBaJIbHUX JAHWX, TOYHICTh Ha MEPEeBiPKOBHUX JaHWX, QYHKILis BTpaT, PyHKLisA po3noiny (knacudikarii).

Abstract:

This report is dedicated to cover the investigation and comparison of neural network prediction efficiency correlation
with convolution layers’ quantity and structure. A neural network recognizing gestures language is taken as a subject of
this research.

Keywords: neural network, convolution layer, filter, recognition, model training (fitting), dataset, training accuracy,
validation accuracy, loss function, distribution (classification) function.

Introduction
The purpose of this paper is to investigate convolutional neural network, which includes deep neural
network (DNN further), preceded by convolutional layers, efficiency in image recognition accuracy. Also it is
aimed to figure out impact can be caused on input recognition accuracy by different number of convolution
layers’ amount and its’ structure as well. The neural network observation is performed on handles gestures
language classification, so it classifies gestures into 24 classes (for number of letters in the English alphabet
except J and Z, since they require motion).

Neural Network General Structure
The neural network consists of image preprocessing convolutional layer, as well as pooling layers, deep
neural network hidden dense layer and a classification output layer. The dataset used for this task is a MNIST
gestures dataset originated from Kaggle competition. It contains around 28’000 training images and slightly
more than 7°000 for validation [1]. Data is passed to network via image data generator in batches of 128pc.
Every image is grayscale and has dimension 28x28. Some values will be predefined while some will be
adjustable.

Convolution Layer
The first section of this is a convolutional layers’ sequence. The convolutions are applied to detect features
in the image due to filters. In simple words, filter is a matrix of odd numbers, i.e. 3x3, 5x5 etc. There is a plenty
of such filters differing in sizes and features they detect, but this paper is not dedicated to get through it, though
enough well-written explanations and examples can be found [2]. Also in this chain a pooling layers are

present, which condense input data while keep the most essential features. The principle of this process is quite

simple. It lays in division of all the image I(MxN) into small segments S;;(K,L), i=1,..., % =1,..., % The

resulting image will be I*(%, %), and will consist of the highest values from the segments. E.qg. the S;; one has

15 2

27 120
In the resulting matrix this element has (1,1) position. Also it’s important to note some essential properties.

Firstly, since the data is a raw image matrix, particular values are in 1 to 256 (in most computer languages 0
to 255). If operations are performed on normalized data, the values will be float O to 1. Secondly, every
convolution will crop image. Convolution of size (3x3) will result in image (50x50) will become (48x48) since

such values: [] As has been mentioned before, the output will be 120 since it’s the greatest number.

the edges doesn’t have full neighbour elements matrix (i.e. the filter of size (3x3) on element at (0,0) should
contain
-1-1 (-10) (-1L1)
-1 (00 (01
L-D @0 (LD
And it is obvious elements with negative indices can’t be allocated. As it has been mentioned, this layer is
a subject to change to obtain different results.

Hidden DNN Layer
This layer plays an important role in model improvement. Generally speaking, the designation of any neural
network is to define the target function, which would for every argument x set in relation target value y. In this
case X is represented by a feature vector so it is better to display it as

1
] (1)

n
It is also called feature vector, where n stands for feature number. The most simple function can be written

in form

Xn =

y = b1x1 + bzXz + -+ bnxn + bki (2)
or

y = Xi=1 bix; + by; 3
It is also called linear regression and shows correlation between feature vector and target value on defined
definite spaces of both features and targets [5]. So let the E(k,n) be the feature vector space and D(m) be the
target space, that is all possible target values. Both spaces can be represented as sets. Every X,, must be put in
relation to some y. It is easy to prove that most cases won’t have strict, i.e. functional relations, and every value
would have certain individual deviation from the regression line. To handle this issues, loss function is applied.
It shows the mean deviation among the sample and helps to understand how to adjust b coefficients in
regression equation. It is clear the less the loss the better the target function so the aim is to minimize it. The

most common loss function are Mean Squared Error (MSE):

m .52
MSE = 2200 (@)
where y; is a predicted value, and y; is a target value, ¥; € D(m); and Cross Entropy Loss (CEL):
CEL = —[y;In(¥) + (1 — y) In(1 — $,)]. (5)

There is quite a variety of loss functions as well as target functions, and one of the important things is to
define which one is of best use in particular case.

This hidden layer is designated to minimize the loss function. It is should be noted the hidden layer consists
in this case of single dense layer of neurons with 512 neurons into it. The loss function applied in this case is
decided to be the CEL, since the input data is hormalized, and this function is very good at normalized data.
Also, classification to be done is among 24 possible classes, and CEL is great in penalizing probabilities which
are confident enough but wrong [3].

Output Layer
Once the target function is calculated, it is passed to output layer, which defines which of the given 24
classes suits the most for the particular feature vector. Since neural network operates solely in the probabilistic
field, and the output should be in this case represented by only one class, the classification function is applied.
In particular, the output layer will be dense layer of 24 neurons, accordingly to class number. The activation,
or, in other words, classification function there is a Softmax, also known as normalized exponential function
will be applied. It is a function that takes as input a vector of K real numbers, and normalizes it into a probability
distribution consisting of K probabilities proportional to the exponentials of the input numbers. It is used in
this case to represent categorical distribution of k probabilities py, p,, ..., pi, -.., P [5] meanwhile
=1 (6)
So the function graph will take the form as shown on figure 1.

Figure 1. Softmax activation function in the Euclidean plane

Practical Research

All the parameters have been divided into static and adjustable. To static were included epochs number,
batch size, optimizer class, activation and loss functions, amount of DNN layers and neurons in them and steps
per epoch. There, epochs number stands for amount of cycles fill be performed on model training and is set to
15; batch size is a number of image samples will be processed and their features included into loss function
before an actual adjustment is done and further processing is done with adjusted parameters and is set to 128;
steps per epoch means amount of batches to be processed during each epoch and is set to 215, since training
dataset contains 27455 images, and 215*128=27520, which covers all the dataset so dataset fully processed on
each epoch; optimizer decided to use for target function adjustment is a RMSprop with learning rate 0,001 [4];
activation function is softmax, loss function is the CEL; there will be one dense layer with 512 units in it.

As the lower bound, the result without any convolution will be set.

layers.Conv2D(1,(1,1),activation=tf.nn.relu,input_shape=(28,28,1)),
layers.Flatten(),

layers.Dense(512,activation=tf.nn.relu),
layers.Dense(25,activation=tf.nn.softmax)

Training and validation accuracy - Training and validation loss
210

''__F_‘__.-—f"" —— TFaining Loss
0045 _/\\,_,./\\ 313205 — Validation Loss
0040 3200

1195

0035 — ‘.:'-d ning accuracy
— alidation acCurac
¥ 1190

0030

1185

3175
L 2 4 & & 0 n 1 o 2 4 & 8 10 n M

Figure 2. Launch without any convolutions

Then, a set of launches with different settings has been performed:

layers.

layers

layers.
layers.
layers.

layers

layers.

.MaxPooling2D(2,2),
Conv2D(16,(3,3),activation=tf.nn.relu),
Conv2D(16,(3,3),activation=tf.nn.relu),
Conv2D(32,(3,3),activation=tf.nn.relu),
.MaxPooling2D(2,2),

Flatten(),

Training and validation accuracy

Conv2D(8, (3,3),activation=tf.nn.relu,input_shape=(28,28,1)),

Training and validation loss

175
= Taining Loss
150 4 — Validation Loss
125 A
100 1
0.75 4
0.50 4
- 0.25 q
= Taining accuracy
054 = Validation accuracy 0.00 4
0 2 P B w1 o1 0 a E 8 1 1 1
Figure 3. 4 convolution layers and 2 pooling layers
layers.Conv2D(8, (3,3),activation=tf.nn.relu,input_shape=(28,28,1)’
layers.Conv2D(16, (3,3),activation=tf.nn.relu),
layers.Conv2D(16, (3,3),activation=tf.nn.relu),
layers.Conv2D(32,(3,3),activation=tf.nn.relu),
layers.Flatten(),
Training and validation accuracy Training and validation loss
1000
0375 4 20
0950 4
0925 1 159
—— Training accuracy —— Training Loss
0.900 1 —— Validation accuracy 101 — Validaticn Loss
0E75 1
0.850 05 1
0.825 1 f"ﬂ__h*__‘hE/’},/-—Ah___ﬂ._;__ﬁh‘
0.800 1 0.0 |
T T T T T T T T T T T T T T T T
0 2 4 6 8 10 12 14 0 2 4 6 B 10 12 14
Figure 4. 4 convolutional layers
layers.Conv2D(8, (3,3),activation=tf.nn.relu,input_shape=(28,28,1)),
layers.Conv2D(16,(3,32),activation=tf.nn.relu),
layers.Conv2D(16,(3,32),activation=tf.nn.relu),
layers.Conv2D(32,(3,3),activation=tf.nn.relu),
layers.MaxPooling2D(2,2),
Training and validation accuracy Training and validation loss
100 175 —
—— Taining Loss
150 4 — Validation Loss
095 1
125 {
090 1 100 4
0.75 1
085 1
0.50 4
0.80 0.25 -
— Taining accuracy
= Validation accuracy 0.00 1
0o 2 4 5 8 W 1 1 °o 2 4 & 8 W 1

Figure 5. 4 convolution layers and one pooling layer

layers.Conv2D(8,(3,3),activation=tf.nn.relu, input_shape=(28,28,1)).
layers.Conv2D(16, (3,3),activation=tf.nn.relu),
layers.Conv2D(32,(3,3),activation=tf.nn.relu),

layers.Conv2D(64, (3,3),activation=tf.nn.relu),

layers.Flatten(),

Training and validation accuracy Training and validation loss
100 4 3.0 { = Taining Loss
—— Validation Loss
25 1
095 4
20
0.90 1 —_— ?a?nin.g accuracy 15
—— V\alidation accuracy
10 A
085
0.5 4 \—_\\
0.80 0.0 4
T T T T T T T T T ! T T T T T T
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14

Figure 6. 4 convolution layers, each produces doubled amount convolutions as preceding

layers.Conv2D(16, (3,3),activation=tf.nn.relu, input_shape=(28,28,1)),
layers.Conv2D(16, (5,5),activation=tf.nn.relu),
layers.Conv2D(16, (5,5),activation=tf.nn.relu),
layers.Conv2D(32, (5,5),activation=tf.nn.relu),

Training and validation accuracy Training and validation loss
100 124 —— Taining Loss
—— Validation Loss
0.95 10
0.90 { 0.8 1
0.85 4 D& 7
044
0.80
0.2 1
0.75 1 —— Taining accuracy
— Validation accuracy 00
0 : 4 6 8 1 1 u 0o 2 4 6 8 W 1 1
Figure 7. Another example of 4-layer convolution configuration
layers.Conv2D(16,(3,3),activation=tf.nn.relu, input_shape=(28,28,1)),
layers.MaxPooling2D(2,2),
layers.Conv2D(32,(5,5),activation=tf.nn.relu),
layers.Flatten(),
Training and validation accuracy Training and validation loss
100 4 10 —— Taining Loss
—— Validation Loss
095 4
0.90
0.85 4
0.80 4
0.75 4
= Taining accuracy
0.70 4 = Validation accuracy

T T T T T T T T
0 2 4 5 8 10 12 14 o 2 4 5] 8 10 12 14

Figure 8. 2 convolution layers and max pooling between them

layers.Conv2D(16, (3,3),activation=tf.nn.relu, input_shape=(28,28,1)),

layers.Conv2D(64, (3,3),activation=tf.nn.relu),
layers.MaxPooling2D(2,2),
layers.Flatten(),

Training and validation accuracy

Training and validation loss

1000 - 14— Taining Loss
0975 | —— Validation Loss
124
0.950 -
10 A
0925 +
0.8 4
0.900 4
0.6 4
0.875 -
044
0.:850 -
—— 0.2 4
0.825 1 Taining accuracy
= Validation accuracy 0.0
2 4 5 8 W 1 1 o 2 4 5 8 W 1
Figure 9. 2 convolution layers followed by max pooling one
layers.Conv2D(16, (3,3),activation=tf.nn.relu, input_shape=(28,28,1)),
layers.MaxPooling2D(2,2),
layers.Conv2D(64, (3,3),activation=tf.nn.relu),
layers.MaxPooling2D(2,2),
layers.Flatten(),
Training and validation accuracy Training and validation loss
100 —— Taining Loss
127 —— Validation Loss
0.95 A
10 1
0.90 4
085 1 081
0.80 0.6 4
0.75 1 0.4
0.70 A
0.2 4
065 4 _— 'ra?nin.g accuracy
= Validaticn accuracy 0.0
o 2 4 & & W B B °o 2 4 & & L 1 B

Figure 10. Modification of 2 convolution and 2 pooling layers interchanging each other

layers.Conv2D(32, (3,3),activation=tf.nn.relu,input_shape=(28,28,1)),

layers.MaxPooling2D(2,2),

layers.Conv2D(32, (3,3),activation=tf.nn.relu),
layers.Conv2D(16, (3,3),activation=tf.nn.relu),
layers.MaxPooling2D(2,2),

layers.Flatten(),

Training and validation accuracy

Training and validation loss

0.6

141

— Taining accuracy
— Validation accuracy

—— Taining Loss
—— Validation Loss

T
4 6 il 10 1z 14

Figure 11. 3 convolution layers and 2 pooling ones

layers.Conv2D(32, (3,3),activation=tf.nn.relu,input_shape=(28,28,1)),
layers.MaxPooling2D(2,2),

layers.Conv2D(32, (3,3),activation=tf.nn.relu),

layers.Conv2D(32, (3,3),activation=tf.nn.relu),
layers.MaxPooling2D(2,2),

layers.Flatten(),

Training and validation accuracy Training and validation loss
100 — Taining Loss
005 12 —— Validation Loss
090 10
0.85 08
0.80
0.6
0.75
04
070
0z
085 — Taining accuracy
0.60 — Validation accuracy 0.0
o 2 4 6 8 10 12 14 o 2 4 6 8 10 12 14
Figure 12. Adjusted previous model
layers.Conv2D(16, (3,3),activation=tf.nn.relu, input_shape=(23,28,1)),
layers.MaxPooling2D(2,2),
layers.Conv2D(16,(3,3),activation=tf.nn.relu),
layers.Conv2D(16,(3,3),activation=tf.nn.relu),
layers.MaxPooling2D(2,2),
layers.Flatten(),
Training and validation accuracy Training and validation loss
16
10 — Taining Loss
14 —— \alidation Loss
09 12
10
08
0.8
0.7 06
0.4
0.6
— Taining accuracy 0.z
= Validation accuracy 0.0
o 2 4 6 8 10 12 14 i) 2 4 [8 10 1z 14
Figure 13. Slightly more adjustments
layers.Conv2D(16, (3,3),activation=tf.nn.relu, input_shape=(28,28,1)),
layers.MaxPooling2D(2,2),
layers.Conv2D(16, (3,3),activation=tf.nn.relu),
layers.MaxPooling2p(2,2),
layers.Conv2D(16, (3,3),activation=tf.nn.relu),
layers.Flatten(),
Training and validation accuracy Training and validation loss
10 200 —— Training Loss
175 —— Validation Loss
09
150
08 125
07 100
06 075
050
05
= Taining accuracy 025
0.4 = Validation accuracy 0.00
0 2 4 6 8 10 12 1 0 2 4 3 8 10 12 14

Figure 14. Modification of model from figure 13

As can be observed, more doesn’t always mean better in computer vision and machine learning. So
acquiring really worth model really requires some effort on tries and errors. On the other hand, there wasn’t
much space on image preprocessing via convolutions and pooling since input size was only 28x28, and as
every convolution or pooling crops a part of image, there were some limitations in possible modification (the
input to hidden layer should have contained at least 3x3 pixels). Also it should be noted, the layer called Flatten
is used to transform matrix (m, n) into feature vector (m*n). It is present in every experiment and stands for
transformation the data into format can be processed by Dense layer. Also an interesting case can be spotted
when comparing figures 13 and 14. On the first sight, there is an impression that model from figure 14 performs
better. Yes, the accuracy line does slightly better than one from figure 13. But when looking on the loss function

comparison, the one from figure 13 is better since it is slightly lower. Generally speaking, it can be concluded
that overfitting is performed on most models so probably 15 is too much in this case. On the other hand, the
smoother the training, the less it likely to overfit and the more likely to get better results.

USED LITERATURE LIST

1. Michigan Institute of Technology, Drop-In Replacement for MNIST for Hand Gesture Recognition Tasks [Electronic resource]
— Electronic data. — Mode of access: https://www.kaggle.com/datamunge/sign-language-mnist/tasks — Title from screen.

2. Lode Vandevenne, Image Filtering. [Electronic resource] - Electronic data. — Mode of access:
https://lodev.org/cgtutor/filtering.html — Title from the screen.
3. Common loss functions in machine learning [Electronic resource] — Electronic data. — Mode of access:

https://towardsdatascience.com/common-loss-functions-in-machine-learning-46afOffc4d23 — Title from screen.

4. A Look at Gradient Descent and RMSprop Optimizers [Electronic resource] — Electronic data. — Mode of access:
https://towardsdatascience.com/a-look-at-gradient-descent-and-rmsprop-optimizers-f77d483ef08b — Title from the screen.

5. Machine Learning, Tom Mitchell, McGraw Hill, 1997. ISBN 0070428077.

bozau Inona Bimaniiena, xaHIuIaT TEXHIYHUX HAYK, JNOUEHT Kadenpw aBTOMATH3allli Ta IHTEICKTYaJIbHUX
iH(OpMaIiHUX TeXHOIOTH, BiHHUIIbKUI HallIOHAILHUN TeXHIYHUE yHiBepcuTeT, ilona.bogach@gmail.com.

Manvosanuit /Imumpo Baoumosuu, crynent rpynu 11CT-186, DakynbTeT KOMI FOTEPHUX CHCTEM Ta aBTOMATHUKHY,
BiHHMIIbKHIA HAalllOHANIBHUN TeXHIYHUIA yHiBepcuTeT, dmytro.maliovanyi@gmail.com.

Bogach llona Vitaliivha, PhD, Associate Professor of the department of automation and intelligent information
technologies, Vinnytsia National Technical University, ilona.bogach@gmail.com.

Maliovanyi Dmytro Vadymovych, the student of 1IST-18B, the faculty of computer systems and automation,
Vinnytsia National Technical University, dmytro.maliovanyi @gmail.com.

https://www.kaggle.com/datamunge/sign-language-mnist/tasks
https://towardsdatascience.com/common-loss-functions-in-machine-learning-46af0ffc4d23
https://towardsdatascience.com/a-look-at-gradient-descent-and-rmsprop-optimizers-f77d483ef08b
mailto:ilona.bogach@gmail.com
mailto:ilona.bogach@gmail.com

