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Анотація: 
Дану доповідь присвячено дослідженню та порівнянню кореляції ефективності прогнозування нейронної 

мережі та кількістю шарів згортки та їх структурою. За суб’єкт дослідження взято нейронну мережу, що 

розпізнає зображення мови жестів. 
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Abstract: 

This report is dedicated to cover the investigation and comparison of neural network prediction efficiency correlation 
with convolution layers’ quantity and structure. A neural network recognizing gestures language is taken as a subject of 

this research. 

Keywords: neural network, convolution layer, filter, recognition, model training (fitting), dataset, training accuracy, 

validation accuracy, loss function, distribution (classification) function. 

 

 
Introduction 

The purpose of this paper is to investigate convolutional neural network, which includes deep neural 

network (DNN further), preceded by convolutional layers, efficiency in image recognition accuracy. Also it is 
aimed to figure out impact can be caused on input recognition accuracy by different number of convolution 

layers’ amount and its’ structure as well. The neural network observation is performed on handles gestures 

language classification, so it classifies gestures into 24 classes (for number of letters in the English alphabet 
except J and Z, since they require motion). 

 

Neural Network General Structure 
The neural network consists of image preprocessing convolutional layer, as well as pooling layers, deep 

neural network hidden dense layer and a classification output layer. The dataset used for this task is a MNIST 

gestures dataset originated from Kaggle competition. It contains around 28’000 training images and slightly 

more than 7’000 for validation [1]. Data is passed to network via image data generator in batches of 128pc. 
Every image is grayscale and has dimension 28x28. Some values will be predefined while some will be 

adjustable. 

 

Convolution Layer 
The first section of this is a convolutional layers’ sequence. The convolutions are applied to detect features 

in the image due to filters. In simple words, filter is a matrix of odd numbers, i.e. 3x3, 5x5 etc. There is a plenty 

of such filters differing in sizes and features they detect, but this paper is not dedicated to get through it, though 
enough well-written explanations and examples can be found [2]. Also in this chain a pooling layers are 

present, which condense input data while keep the most essential features. The principle of this process is quite 

simple. It lays in division of all the image I(MxN) into small segments 𝑆𝑖𝑗(K,L), i=1,…,  
𝑀

𝐾
, j=1,…,  

𝑁

𝐿
. The 

resulting image will be I*(
𝑀

𝐾
, 
𝑁

𝐿
), and will consist of the highest values from the segments. E.g. the 𝑆11 one has 

such values: [
15
27

2
120

]. As has been mentioned before, the output will be 120 since it’s the greatest number. 

In the resulting matrix this element has (1,1) position. Also it’s important to note some essential properties. 

Firstly, since the data is a raw image matrix, particular values are in 1 to 256 (in most computer languages 0 
to 255). If operations are performed on normalized data, the values will be float 0 to 1. Secondly, every 

convolution will crop image. Convolution of size (3x3) will result in image (50x50) will become (48x48) since 



the edges doesn’t have full neighbour elements matrix (i.e. the filter of size (3x3) on element at (0,0) should 

contain 

[

(−1,−1) (−1,0) (−1,1)
(0, −1)     (0,0)    (0,1)
(1, −1)    (1,0)     (1,1)

] 

And it is obvious elements with negative indices can’t be allocated. As it has been mentioned, this layer is 

a subject to change to obtain different results. 

 

Hidden DNN Layer 

This layer plays an important role in model improvement. Generally speaking, the designation of any neural 

network is to define the target function, which would for every argument x set in relation target value y. In this 

case x is represented by a feature vector so it is better to display it as  

𝑋𝑛
⃗⃗ ⃗⃗  = [

1
…
𝑛
].      (1) 

It is also called feature vector, where n stands for feature number. The most simple function can be written 
in form 

𝑦 = 𝑏1𝑥1 + 𝑏2𝑥2 + ⋯+ 𝑏𝑛𝑥𝑛 + 𝑏𝑘,     (2) 

 or 

𝑦 = ∑ 𝑏𝑖𝑥𝑖
𝑛
𝑖=1 + 𝑏𝑘;      (3) 

It is also called linear regression and shows correlation between feature vector and target value on defined 
definite spaces of both features and targets [5]. So let the E(k,n) be the feature vector space and D(m) be the 

target space, that is all possible target values. Both spaces can be represented as sets. Every 𝑋𝑛 must be put in 

relation to some y. It is easy to prove that most cases won’t have strict, i.e. functional relations, and every value 
would have certain individual deviation from the regression line. To handle this issues, loss function is applied. 

It shows the mean deviation among the sample and helps to understand how to adjust b coefficients in 

regression equation. It is clear the less the loss the better the target function so the aim is to minimize it. The 

most common loss function are Mean Squared Error (MSE): 

𝑀𝑆𝐸 = 
∑ (𝑦𝑖−�̂�𝑖)

2𝑚
𝑖=1

𝑚
,      (4) 

where 𝑦𝑖 is a predicted value, and �̂�𝑖 is a target value, �̂�𝑖 ∈ 𝐷(𝑚); and Cross Entropy Loss (CEL): 

𝐶𝐸𝐿 = −[𝑦𝑖 ln(�̂�𝑖) + (1 − 𝑦𝑖) ln(1 − �̂�𝑖)].    (5) 

There is quite a variety of loss functions as well as target functions, and one of the important things is to 

define which one is of best use in particular case. 
This hidden layer is designated to minimize the loss function. It is should be noted the hidden layer consists 

in this case of single dense layer of neurons with 512 neurons into it. The loss function applied in this case is 

decided to be the CEL, since the input data is normalized, and this function is very good at normalized data. 

Also, classification to be done is among 24 possible classes, and CEL is great in penalizing probabilities which 
are confident enough but wrong [3]. 

 

Output Layer 
Once the target function is calculated, it is passed to output layer, which defines which of the given 24 

classes suits the most for the particular feature vector. Since neural network operates solely in the probabilistic 

field, and the output should be in this case represented by only one class, the classification function is applied. 
In particular, the output layer will be dense layer of 24 neurons, accordingly to class number. The activation, 

or, in other words, classification function there is a Softmax, also known as normalized exponential function 

will be applied. It is a function that takes as input a vector of K real numbers, and normalizes it into a probability 

distribution consisting of K probabilities proportional to the exponentials of the input numbers. It is used in 

this case to represent categorical distribution of k probabilities 𝑝1, 𝑝2,… , 𝑝𝑖,… , 𝑝𝑘 [5] meanwhile 

∑ 𝑝𝑖
𝑘
𝑖=1 = 1;      (6) 

So the function graph will take the form as shown on figure 1. 

 



 
Figure 1. Softmax activation function in the Euclidean plane 

 

Practical Research 

All the parameters have been divided into static and adjustable. To static were included epochs number, 
batch size, optimizer class, activation and loss functions, amount of DNN layers and neurons in them and steps 

per epoch. There, epochs number stands for amount of cycles fill be performed on model training and is set to 

15; batch size is a number of image samples will be processed and their features included into loss function 

before an actual adjustment is done and further processing is done with adjusted parameters and is set to 128; 
steps per epoch means amount of batches to be processed during each epoch and is set to 215, since training 

dataset contains 27455 images, and 215*128=27520, which covers all the dataset so dataset fully processed on 

each epoch; optimizer decided to use for target function adjustment is a RMSprop with learning rate 0,001 [4]; 
activation function is softmax, loss function is the CEL; there will be one dense layer with 512 units in it. 

As the lower bound, the result without any convolution will be set. 

 

 
Figure 2. Launch without any convolutions 

 
Then, a set of launches with different settings has been performed: 



 
Figure 3. 4 convolution layers and 2 pooling layers 

 

 

 
Figure 4. 4 convolutional layers 

 
 

 
Figure 5. 4 convolution layers and one pooling layer 

 



 
Figure 6. 4 convolution layers, each produces doubled amount convolutions as preceding 

 
 

 
Figure 7. Another example of 4-layer convolution configuration 

 

 

 
Figure 8. 2 convolution layers and max pooling between them 

 

 



 
Figure 9. 2 convolution layers followed by max pooling one 

 

 

 
Figure 10. Modification of 2 convolution and 2 pooling layers interchanging each other 

 

 

 
Figure 11. 3 convolution layers and 2 pooling ones 

 

 



 
Figure 12. Adjusted previous model 

 

 

 
Figure 13. Slightly more adjustments 

 
 

 
Figure 14. Modification of model from figure 13 

 
As can be observed, more doesn’t always mean better in computer vision and machine learning. So 

acquiring really worth model really requires some effort on tries and errors. On the other hand, there wasn’t 

much space on image preprocessing via convolutions and pooling since input size was only 28x28, and as 
every convolution or pooling crops a part of image, there were some limitations in possible modification (the 

input to hidden layer should have contained at least 3x3 pixels). Also it should be noted, the layer called Flatten 

is used to transform matrix (m, n) into feature vector (m*n). It is present in every experiment and stands for 

transformation the data into format can be processed by Dense layer. Also an interesting case can be spotted 
when comparing figures 13 and 14. On the first sight, there is an impression that model from figure 14 performs 

better. Yes, the accuracy line does slightly better than one from figure 13. But when looking on the loss function 



comparison, the one from figure 13 is better since it is slightly lower. Generally speaking, it can be concluded 

that overfitting is performed on most models so probably 15 is too much in this case. On the other hand, the 
smoother the training, the less it likely to overfit and the more likely to get better results. 
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